Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(21): 5877-5889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37795937

RESUMO

Parasites with complex life cycles often manipulate the phenotype of their intermediate hosts to increase the probability of transmission to their definitive hosts. Infection with Anomotaenia brevis, a cestode that uses Temnothorax nylanderi ants as intermediate hosts, leads to a multiple-fold extension of host lifespan and to changes in behaviour, morphology and colouration. The mechanisms behind these changes are unknown, as is whether the increased longevity is achieved through parasite manipulation. Here, we demonstrate that the parasite releases proteins into its host with functions that might explain the observed changes. These parasitic proteins make up a substantial portion of the proteome of the hosts' haemolymph, and thioredoxin peroxidase and superoxide dismutase, two antioxidants, exhibited the highest abundances among them. The largest part of the secreted proteins could not be annotated, indicating they are either novel or severely altered during recent coevolution to function in host manipulation. We also detected shifts in the hosts' proteome with infection, in particular an overabundance of vitellogenin-like A in infected ants, a protein that regulates division of labour in Temnothorax ants, which could explain the observed behavioural changes. Our results thus suggest two different strategies that might be employed by this parasite to manipulate its host: secreting proteins with immediate influence on the host's phenotype and altering the host's translational activity. Our findings highlight the intricate molecular interplay required to influence the phenotype of a host and point to potential signalling pathways and genes involved in parasite-host communication.


Assuntos
Formigas , Cestoides , Parasitos , Animais , Interações Hospedeiro-Parasita/genética , Proteoma/genética , Proteômica , Formigas/genética
2.
Mol Ecol ; 32(22): 6027-6043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37830492

RESUMO

Social insects are models for studies of phenotypic plasticity. Ant queens and workers vary in fecundity and lifespan, which are enhanced and extended in queens. Yet, the regulatory mechanisms underlying this variation are not well understood. Ant queens live and reproduce for years, so that they need to protect their germline from transposable element (TE) activity, which may be redundant in short-lived, often sterile workers. We analysed the expression of two protective classes of small RNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), in various tissues, castes and age classes of the ant Temnothorax rugatulus. In queens, piRNAs were highly abundant in ovaries with TEs being their clear targets, with reduced but still detectable piRNA-specific ping-pong signatures in thorax and brains. piRNA pathway activity varied little with age in queens. Moreover, the reduced ovaries of workers also exhibited similar piRNA activity and this not only in young, fertile workers, but also in older foragers with regressed ovaries. Therefore, these ants protect their germline through piRNA activity, regardless of ovarian development, age or caste, even in sterile workers often considered the soma of the superorganism. Our tissue-specific miRNA analysis detected the expression of 304 miRNAs, of which 105 were expressed in all tissues, 10 enriched in the brain, three in the thorax, whereas 83 were ovarian-specific. We identified ovarian miRNAs whose expression was related to caste, fecundity and age, and which likely regulate group-specific gene expression. sRNA shifts in young- to middle-aged queens were minor, suggesting delayed senescence in this reproductive caste.


Assuntos
Formigas , MicroRNAs , Animais , RNA de Interação com Piwi , Formigas/genética , Fertilidade/genética , MicroRNAs/genética , Células Germinativas
3.
Mol Ecol ; 30(10): 2378-2389, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33772940

RESUMO

Humans and other social mammals experience isolation from their group as stressful, triggering behavioural and physiological anomalies that reduce fitness. While social isolation has been intensely studied in social mammals, it is less clear how social insects, which evolved sociality independently, respond to isolation. Here we examined whether the typical mammalian responses to social isolation, e.g., an impaired ability to interact socially and immune suppression are also found in social insects. We studied the consequences of social isolation on behaviour and brain gene expression in the ant Temnothorax nylanderi. Following isolation, workers interacted moderately less with adult nestmates, increased the duration of brood contact, and reduced the time spent self-grooming, an important sanitary behaviour. Our brain transcriptome analysis revealed that only a few behaviour-related genes had altered their expression with isolation time. Rather, many genes linked to immune system functioning and stress response had been downregulated. This probably sensitizes isolated individuals to various stressors, in particular because isolated workers exhibit reduced sanitary behaviour. We provide evidence of the diverse consequences of social isolation in social insects, some of which resemble those found in social mammals, suggesting a general link between social well-being, stress tolerance, and immune competence in social animals.


Assuntos
Formigas , Comportamento Animal , Animais , Formigas/genética , Regulação para Baixo , Humanos , Insetos , Comportamento Social , Isolamento Social
4.
Naturwissenschaften ; 104(3-4): 34, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28353195

RESUMO

According to the classic life history theory, selection for longevity depends on age-dependant extrinsic mortality and fecundity. In social insects, the common life history trade-off between fecundity and longevity appears to be reversed, as the most fecund individual, the queen, often exceeds workers in lifespan several fold. But does fecundity directly affect intrinsic mortality also in social insect workers? And what is the effect of task on worker mortality? Here, we studied how social environment and behavioral caste affect intrinsic mortality of ant workers. We compared worker survival between queenless and queenright Temnothorax longispinosus nests and demonstrate that workers survive longer under the queens' absence. Temnothorax ant workers fight over reproduction when the queen is absent and dominant workers lay eggs. Worker fertility might therefore increase lifespan, possibly due to a positive physiological link between fecundity and longevity, or better care for fertile workers. In social insects, division of labor among workers is age-dependant with young workers caring for the brood and old ones going out to forage. We therefore expected nurses to survive longer than foragers, which is what we found. Surprisingly, inactive inside workers showed a lower survival than nurses but comparable to that of foragers. The reduced longevity of inactive workers could be due to them being older than the nurses, or due to a positive effect of activity on lifespan. Overall, our study points to behavioral caste-dependent intrinsic mortality rates and a positive association between fertility and longevity not only in queens but also in ant workers.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Longevidade/fisiologia , Animais , Feminino , Reprodução/fisiologia , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...