Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Front Physiol ; 15: 1386296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742156

RESUMO

Sigmar1 is a ubiquitously expressed, multifunctional protein known for its cardioprotective roles in cardiovascular diseases. While accumulating evidence indicate a critical role of Sigmar1 in cardiac biology, its physiological function in the vasculature remains unknown. In this study, we characterized the expression of Sigmar1 in the vascular wall and assessed its physiological function in the vascular system using global Sigmar1 knockout (Sigmar1-/-) mice. We determined the expression of Sigmar1 in the vascular tissue using immunostaining and biochemical experiments in both human and mouse blood vessels. Deletion of Sigmar1 globally in mice (Sigmar1-/-) led to blood vessel wall reorganizations characterized by nuclei disarray of vascular smooth muscle cells, altered organizations of elastic lamina, and higher collagen fibers deposition in and around the arteries compared to wildtype littermate controls (Wt). Vascular function was assessed in mice using non-invasive time-transit method of aortic stiffness measurement and flow-mediated dilation (FMD) of the left femoral artery. Sigmar1-/- mice showed a notable increase in arterial stiffness in the abdominal aorta and failed to increase the vessel diameter in response to reactive-hyperemia compared to Wt. This was consistent with reduced plasma and tissue nitric-oxide bioavailability (NOx) and decreased phosphorylation of endothelial nitric oxide synthase (eNOS) in the aorta of Sigmar1-/- mice. Ultrastructural analysis by transmission electron microscopy (TEM) of aorta sections showed accumulation of elongated shaped mitochondria in both vascular smooth muscle and endothelial cells of Sigmar1-/- mice. In accordance, decreased mitochondrial respirometry parameters were found in ex-vivo aortic rings from Sigmar1 deficient mice compared to Wt controls. These data indicate a potential role of Sigmar1 in maintaining vascular homeostasis.

2.
Sci Rep ; 14(1): 8996, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637671

RESUMO

Alzheimer's disease (AD), a neurodegenerative disease that mostly affects the elderly, slowly impairs memory, cognition, and daily tasks. AD has long been one of the most debilitating chronic neurological disorders, affecting mostly people over 65. In this study, we investigated the use of Vision Transformer (ViT) for Magnetic Resonance Image processing in the context of AD diagnosis. ViT was utilized to extract features from MRIs, map them to a feature sequence, perform sequence modeling to maintain interdependencies, and classify features using a time series transformer. The proposed model was evaluated using ADNI T1-weighted MRIs for binary and multiclass classification. Two data collections, Complete 1Yr 1.5T and Complete 3Yr 3T, from the ADNI database were used for training and testing. A random split approach was used, allocating 60% for training and 20% for testing and validation, resulting in sample sizes of (211, 70, 70) and (1378, 458, 458), respectively. The performance of our proposed model was compared to various deep learning models, including CNN with BiL-STM and ViT with Bi-LSTM. The suggested technique diagnoses AD with high accuracy (99.048% for binary and 99.014% for multiclass classification), precision, recall, and F-score. Our proposed method offers researchers an approach to more efficient early clinical diagnosis and interventions.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Idoso , Doença de Alzheimer/patologia , Doenças Neurodegenerativas/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
3.
Redox Biol ; 70: 103085, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359746

RESUMO

Endothelial dysfunction and endothelial activation are common early events in vascular diseases and can arise from mitochondrial dysfunction. Neurogranin (Ng) is a 17kD protein well known to regulate intracellular Ca2+-calmodulin (CaM) complex signaling, and its dysfunction is significantly implicated in brain aging and neurodegenerative diseases. We found that Ng is also expressed in human aortic endothelial cells (HAECs), and depleting Ng promotes Ca2+-CaM complex-dependent endothelial activation and redox imbalances. Endothelial-specific Ng knockout (Cre-CDH5-Ngf/f) mice demonstrate a significant delay in the flow-mediated dilation (FMD) response. Therefore, it is critical to characterize how endothelial Ng expression regulates reactive oxygen species (ROS) generation and affects cardiovascular disease. Label-free quantification proteomics identified that mitochondrial dysfunction and the oxidative phosphorylation pathway are significantly changed in the aorta of Cre-CDH5-Ngf/f mice. We found that a significant amount of Ng is expressed in the mitochondrial fraction of HAECs using western blotting and colocalized with the mitochondrial marker, COX IV, using immunofluorescence staining. Seahorse assay demonstrated that a lack of Ng decreases mitochondrial respiration. Treatment with MitoEbselen significantly restores the oxygen consumption rate in Ng knockdown cells. With the RoGFP-Orp1 approach, we identified that Ng knockdown increases mitochondrial-specific hydrogen peroxide (H2O2) production, and MitoEbselen treatment significantly reduced mitochondrial ROS (mtROS) levels in Ng knockdown cells. These results suggest that Ng plays a significant role in mtROS production. We discovered that MitoEbselen treatment also rescues decreased eNOS expression and nitric oxide (NO) levels in Ng knockdown cells, which implicates the critical role of Ng in mtROS-NO balance in the endothelial cells.


Assuntos
Células Endoteliais , Mitocôndrias , Neurogranina , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Neurogranina/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
4.
Redox Biol ; 68: 102949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922764

RESUMO

Hydropersulfide and hydropolysulfide metabolites are increasingly important reactive sulfur species (RSS) regulating numerous cellular redox dependent functions. Intracellular production of these species is known to occur through RSS interactions or through translational mechanisms involving cysteinyl t-RNA synthetases. However, regulation of these species under cell stress conditions, such as hypoxia, that are known to modulate RSS remain poorly understood. Here we define an important mechanism of increased persulfide and polysulfide production involving cystathionine gamma lyase (CSE) phosphorylation at serine 346 and threonine 355 in a substrate specific manner, under acute hypoxic conditions. Hypoxic phosphorylation of CSE occurs in an AMP kinase dependent manner increasing enzyme activity involving unique inter- and intramolecular interactions within the tetramer. Importantly, both cellular hypoxia and tissue ischemia result in AMP Kinase dependent CSE phosphorylation that regulates blood flow in ischemic tissues. Our findings reveal hypoxia molecular signaling pathways regulating CSE dependent persulfide and polysulfide production impacting tissue and cellular response to stress.


Assuntos
Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/metabolismo , Fosforilação , Adenilato Quinase/metabolismo , Cistationina gama-Liase/genética , Hipóxia
5.
Psychiatry Res ; 329: 115524, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37852161

RESUMO

IMPORTANCE: Methamphetamine use is a growing public health concern nationwide. Suicide is the second leading cause of death in 2019 for US citizens aged 10-14 years and 25-34 years and is also a significant public health concern. Understanding the intersection of methamphetamine use and suicidal ideation (SI) is necessary to develop public health and policy solutions that mitigate these ongoing severe public health issues. OBJECTIVE: Our objective was to examine SI in methamphetamine users to allow us to determine prevalence and trends by age, sex, race, and geographical region. DESIGN, SETTINGS, AND PARTICIPANTS: Using data collected between 2008 and 2019 from the National Inpatient Sample (NIS) database, we identified hospital admissions (HA) of patients ≥18 years of age with a primary or secondary diagnosis of SI who were also diagnosed as methamphetamine users. Those who used other substances with methamphetamine were excluded from the analysis. MAIN OUTCOME AND MEASURES: To determine the trend and prevalence of hospital admissions due to SI and SI among methamphetamine users, we used trend weights to calculate the national estimates and performed design-based analysis to account for complex survey design and sampling weights on data collected between 2008 and 2019 in the US. RESULTS: The prevalence ratio (PR) of hospitalizations with concurrent SI and methamphetamine use increased 16-fold from 2008 to 2019. The most significant increase occurred between 2015 and 2016; the PR doubled from 6.07 to 12.14. The PR of hospitalizations with concurrent SI and methamphetamine use was highest in patients aged 26-40 (49.08%) and 41-64 (28.49%). Patients aged 41-64 showed the most significant increase from 2008 to 2019 (15.8-fold). While non-Hispanic White patients comprised most of these hospitalizations (77.02%), non-Hispanic Black patients showed the highest proportional increase (39.1-fold). The Southern and Western regions in the US showed the highest PR for these hospitalizations (34.86% and 34.31%, respectively). CONCLUSION AND RELEVANCE: Our findings indicate that SI in methamphetamine users has been increasing for some time and is likely to grow. In addition, our results suggest that these patients are demographically different. Both conditions are associated with a lesser likelihood of seeking and receiving care. Therefore, when addressing increased SI or methamphetamine use, learning more about patients who share both conditions is necessary to ensure proper care.


Assuntos
Metanfetamina , Suicídio , Humanos , Estados Unidos/epidemiologia , Adolescente , Ideação Suicida , Metanfetamina/efeitos adversos , Etnicidade , Estudos Longitudinais , Prevalência
6.
Endocrinology ; 164(11)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37738419

RESUMO

Glucocorticoids acting via the glucocorticoid receptors (GR) are key regulators of metabolism and the stress response. However, uncontrolled or excessive GR signaling adversely affects adipose tissue, including endocrine, immune, and metabolic functions. Inflammation of the adipose tissue promotes systemic metabolic dysfunction; however, the molecular mechanisms underlying the role of adipocyte GR in regulating genes associated with adipose tissue inflammation are poorly understood. We performed in vivo studies using adipocyte-specific GR knockout mice in conjunction with in vitro studies to understand the contribution of adipocyte GR in regulating adipose tissue immune homeostasis. Our findings show that adipocyte-specific GR signaling regulates adipokines at both mRNA and plasma levels and immune regulatory (Coch, Pdcd1, Cemip, and Cxcr2) mRNA gene expression, which affects myeloid immune cell presence in white adipose tissue. We found that, in adipocytes, GR directly influences Cxcr2. This chemokine receptor promotes immune cell migration, indirectly affecting Pdcd1 and Cemip gene expression in nonadipocyte or stromal cells. Our findings suggest that GR adipocyte signaling suppresses inflammatory signals, maintaining immune homeostasis. We also found that GR signaling in adipose tissue in response to stress is sexually dimorphic. Understanding the molecular relationship between GR signaling and adipose tissue inflammation could help develop potential targets to improve local and systemic inflammation, insulin sensitivity, and metabolic health.


Assuntos
Tecido Adiposo , Receptores de Glucocorticoides , Camundongos , Animais , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Homeostase/genética , Camundongos Knockout , Genes Reguladores , RNA Mensageiro/metabolismo
7.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446174

RESUMO

Mental stress is a risk factor for myocardial infarction in women. The central hypothesis of this study is that restraint stress induces sex-specific changes in gene expression in the heart, which leads to an intensified response to ischemia/reperfusion injury due to the development of a pro-oxidative environment in female hearts. We challenged male and female C57BL/6 mice in a restraint stress model to mimic the effects of mental stress. Exposure to restraint stress led to sex differences in the expression of genes involved in cardiac hypertrophy, inflammation, and iron-dependent cell death (ferroptosis). Among those genes, we identified tumor protein p53 and cyclin-dependent kinase inhibitor 1A (p21), which have established controversial roles in ferroptosis. The exacerbated response to I/R injury in restraint-stressed females correlated with downregulation of p53 and nuclear factor erythroid 2-related factor 2 (Nrf2, a master regulator of the antioxidant response system-ARE). S-female hearts also showed increased superoxide levels, lipid peroxidation, and prostaglandin-endoperoxide synthase 2 (Ptgs2) expression (a hallmark of ferroptosis) compared with those of their male counterparts. Our study is the first to test the sex-specific impact of restraint stress on the heart in the setting of I/R and its outcome.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Camundongos , Feminino , Masculino , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Expressão Gênica , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
9.
Front Physiol ; 14: 1118770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051024

RESUMO

Sigma1 receptor protein (Sigmar1) is a small, multifunctional molecular chaperone protein ubiquitously expressed in almost all body tissues. This protein has previously shown its cardioprotective roles in rodent models of cardiac hypertrophy, heart failure, and ischemia-reperfusion injury. Extensive literature also suggested its protective functions in several central nervous system disorders. Sigmar1's molecular functions in the pulmonary system remained unknown. Therefore, we aimed to determine the expression of Sigmar1 in the lungs. We also examined whether Sigmar1 ablation results in histological, ultrastructural, and biochemical changes associated with lung pathology over aging in mice. In the current study, we first confirmed the presence of Sigmar1 protein in human and mouse lungs using immunohistochemistry and immunostaining. We used the Sigmar1 global knockout mouse (Sigmar1-/-) to determine the pathophysiological role of Sigmar1 in lungs over aging. The histological staining of lung sections showed altered alveolar structures, higher immune cells infiltration, and upregulation of inflammatory markers (such as pNFκB) in Sigmar1-/- mice compared to wildtype (Wt) littermate control mice (Wt). This indicates higher pulmonary inflammation resulting from Sigmar1 deficiency in mice, which was associated with increased pulmonary fibrosis. The protein levels of some fibrotic markers, fibronectin, and pSMAD2 Ser 245/250/255 and Ser 465/467, were also elevated in mice lungs in the absence of Sigmar1 compared to Wt. The ultrastructural analysis of lungs in Wt mice showed numerous multilamellar bodies of different sizes with densely packed lipid lamellae and mitochondria with a dark matrix and dense cristae. In contrast, the Sigmar1-/- mice lung tissues showed altered multilamellar body structures in alveolar epithelial type-II pneumocytes with partial loss of lipid lamellae structures in the lamellar bodies. This was further associated with higher protein levels of all four surfactant proteins, SFTP-A, SFTP-B, SFTP-C, and SFTP-D, in the Sigmar1-/- mice lungs. This is the first study showing Sigmar1's expression pattern in human and mouse lungs and its association with lung pathophysiology. Our findings suggest that Sigmar1 deficiency leads to increased pulmonary inflammation, higher pulmonary fibrosis, alterations of the multilamellar body stuructures, and elevated levels of lung surfactant proteins.

10.
Redox Biol ; 62: 102633, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36924684

RESUMO

Emerging evidence indicates that vascular stress is an important contributor to the pathophysiology of Alzheimer's disease and related dementias (ADRD). Hydrogen sulfide (H2S) and its metabolites (acid-labile (e.g., iron-sulfur clusters) and bound (e.g., per-, poly-) sulfides) have been shown to modulate both vascular and neuronal homeostasis. We recently reported that elevated plasma sulfides were associated with cognitive dysfunction and measures of microvascular disease in ADRD. Here we extend our previous work to show associations between elevated sulfides and magnetic resonance-based metrics of brain atrophy and white matter integrity. Elevated bound sulfides were associated with decreased grey matter volume, while increased acid labile sulfides were associated with decreased white matter integrity and greater ventricular volume. These findings are consistent with alterations in sulfide metabolism in ADRD which may represent maladaptive responses to oxidative stress.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Sulfetos/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Córtex Cerebral/metabolismo , Atrofia/complicações , Atrofia/metabolismo , Atrofia/patologia , Encéfalo/metabolismo
11.
Crit Care ; 27(1): 34, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691080

RESUMO

BACKGROUND: Recent single-center reports have suggested that community-acquired bacteremic co-infection in the context of Coronavirus disease 2019 (COVID-19) may be an important driver of mortality; however, these reports have not been validated with a multicenter, demographically diverse, cohort study with data spanning the pandemic. METHODS: In this multicenter, retrospective cohort study, inpatient encounters were assessed for COVID-19 with community-acquired bacteremic co-infection using 48-h post-admission blood cultures and grouped by: (1) confirmed co-infection [recovery of bacterial pathogen], (2) suspected co-infection [negative culture with ≥ 2 antimicrobials administered], and (3) no evidence of co-infection [no culture]. The primary outcomes were in-hospital mortality, ICU admission, and mechanical ventilation. COVID-19 bacterial co-infection risk factors and impact on primary outcomes were determined using multivariate logistic regressions and expressed as adjusted odds ratios with 95% confidence intervals (Cohort, OR 95% CI, Wald test p value). RESULTS: The studied cohorts included 13,781 COVID-19 inpatient encounters from 2020 to 2022 in the University of Alabama at Birmingham (UAB, n = 4075) and Ochsner Louisiana State University Health-Shreveport (OLHS, n = 9706) cohorts with confirmed (2.5%), suspected (46%), or no community-acquired bacterial co-infection (51.5%) and a comparison cohort consisting of 99,170 inpatient encounters from 2010 to 2019 (UAB pre-COVID-19 pandemic cohort). Significantly increased likelihood of COVID-19 bacterial co-infection was observed in patients with elevated ≥ 15 neutrophil-to-lymphocyte ratio (UAB: 1.95 [1.21-3.07]; OLHS: 3.65 [2.66-5.05], p < 0.001 for both) within 48-h of hospital admission. Bacterial co-infection was found to confer the greatest increased risk for in-hospital mortality (UAB: 3.07 [2.42-5.46]; OLHS: 4.05 [2.29-6.97], p < 0.001 for both), ICU admission (UAB: 4.47 [2.87-7.09], OLHS: 2.65 [2.00-3.48], p < 0.001 for both), and mechanical ventilation (UAB: 3.84 [2.21-6.12]; OLHS: 2.75 [1.87-3.92], p < 0.001 for both) across both cohorts, as compared to other risk factors for severe disease. Observed mortality in COVID-19 bacterial co-infection (24%) dramatically exceeds the mortality rate associated with community-acquired bacteremia in pre-COVID-19 pandemic inpatients (5.9%) and was consistent across alpha, delta, and omicron SARS-CoV-2 variants. CONCLUSIONS: Elevated neutrophil-to-lymphocyte ratio is a prognostic indicator of COVID-19 bacterial co-infection within 48-h of admission. Community-acquired bacterial co-infection, as defined by blood culture-positive results, confers greater increased risk of in-hospital mortality, ICU admission, and mechanical ventilation than previously described risk factors (advanced age, select comorbidities, male sex) for COVID-19 mortality, and is independent of SARS-CoV-2 variant.


Assuntos
Bacteriemia , COVID-19 , Coinfecção , Infecções Comunitárias Adquiridas , Humanos , Masculino , SARS-CoV-2 , Estudos de Coortes , Estudos Retrospectivos , Respiração Artificial , Pandemias , Mortalidade Hospitalar , Bactérias , Fatores de Risco , Unidades de Terapia Intensiva
12.
Environ Res ; 222: 115351, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709030

RESUMO

Wastewater surveillance has proven to be a useful tool for evidence-based epidemiology in the fight against the SARS-CoV-2 virus. It is particularly useful at the population level where acquisition of individual test samples may be time or cost-prohibitive. Wastewater surveillance for SARS-CoV-2 has typically been performed at wastewater treatment plants; however, this study was designed to sample on a local level to monitor the spread of the virus among three communities with distinct social vulnerability indices in Shreveport, Louisiana, located in a socially vulnerable region of the United States. Twice-monthly grab samples were collected from September 30, 2020, to March 23, 2021, during the Beta wave of the pandemic. The goals of the study were to examine whether: 1) concentrations of SARS-CoV-2 RNA in wastewater varied with social vulnerability indices and, 2) the time lag of spikes differed during wastewater monitoring in the distinct communities. The size of the population contributing to each sample was assessed via the quantification of the pepper mild mottle virus (PMMoV), which was significantly higher in the less socially vulnerable community. We found that the communities with higher social vulnerability exhibited greater viral loads as assessed by wastewater when normalized with PMMoV (Kruskal-Wallis, p < 0.05). The timing of the spread of the virus through the three communities appeared to be similar. These results suggest that interconnected communities within a municipality experienced the spread of the SARS-CoV-2 virus at similar times, but areas of high social vulnerability experienced more intense wastewater viral loads.


Assuntos
COVID-19 , Humanos , RNA Viral , SARS-CoV-2 , Carga Viral , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
13.
GeoJournal ; 88(3): 3239-3248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36531533

RESUMO

Using data from the Louisiana Department of Public Health, we explored the spatial relationships between the Social Vulnerability Index (SVI) and COVID-19-related vaccination and mortality rates. Publicly available COVID-19 vaccination and mortality data accrued from December 2020 to October 2021 was downloaded from the Louisiana Department of Health website and merged with the SVI data; geospatial analysis was then performed to identify the spatial association between the SVI and vaccine uptake and mortality rate. Bivariate Moran's I analysis revealed significant clustering of high SVI ranking with low COVID-19 vaccination rates (1.00, p < 0.001) and high smoothed mortality rates (0.61, p < 0.001). Regression revealed that for each 10% increase in SVI ranking, COVID-19 vaccination rates decreased by 3.02-fold (95% CI = 3.73-2.30), and mortality rates increased by a factor of 1.19 (95% CI = 0.99-1.43). SVI values are spatially linked and significantly associated with Louisiana's COVID-19-related vaccination and mortality rates. We also found that vaccination uptake was higher in whites than in blacks. These findings can help identify regions with low vaccination rates and high mortality, enabling the necessary steps to increase vaccination rates in disadvantaged neighborhoods.

14.
Nat Rev Cardiol ; 20(2): 109-125, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35931887

RESUMO

Hydrogen sulfide (H2S) has emerged as a gaseous signalling molecule with crucial implications for cardiovascular health. H2S is involved in many biological functions, including interactions with nitric oxide, activation of molecular signalling cascades, post-translational modifications and redox regulation. Various preclinical and clinical studies have shown that H2S and its synthesizing enzymes - cystathionine γ-lyase, cystathionine ß-synthase and 3-mercaptosulfotransferase - can protect against cardiovascular pathologies, including arrhythmias, atherosclerosis, heart failure, myocardial infarction and ischaemia-reperfusion injury. The bioavailability of H2S and its metabolites, such as hydropersulfides and polysulfides, is substantially reduced in cardiovascular disease and has been associated with single-nucleotide polymorphisms in H2S synthesis enzymes. In this Review, we highlight the role of H2S, its synthesizing enzymes and metabolites, their roles in the cardiovascular system, and their involvement in cardiovascular disease and associated pathologies. We also discuss the latest clinical findings from the field and outline areas for future study.


Assuntos
Insuficiência Cardíaca , Sulfeto de Hidrogênio , Infarto do Miocárdio , Humanos , Sulfetos , Sulfeto de Hidrogênio/metabolismo , Coração
15.
Muscles ; 2(1): 51-74, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516553

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex systemic disease that primarily involves motor neuron dysfunction and skeletal muscle atrophy. One commonly used mouse model to study ALS was generated by transgenic expression of a mutant form of human superoxide dismutase 1 (SOD1) gene harboring a single amino acid substitution of glycine to alanine at codon 93 (G93A*SOD1). Although mutant-SOD1 is ubiquitously expressed in G93A*SOD1 mice, a detailed analysis of the skeletal muscle expression pattern of the mutant protein and the resultant muscle pathology were never performed. Using different skeletal muscles isolated from G93A*SOD1 mice, we extensively characterized the pathological sequelae of histological, molecular, ultrastructural, and biochemical alterations. Muscle atrophy in G93A*SOD1 mice was associated with increased and differential expression of mutant-SOD1 across myofibers and increased MuRF1 protein level. In addition, high collagen deposition and myopathic changes sections accompanied the reduced muscle strength in the G93A*SOD1 mice. Furthermore, all the muscles in G93A*SOD1 mice showed altered protein levels associated with different signaling pathways, including inflammation, mitochondrial membrane transport, mitochondrial lipid uptake, and antioxidant enzymes. In addition, the mutant-SOD1 protein was found in the mitochondrial fraction in the muscles from G93A*SOD1 mice, which was accompanied by vacuolized and abnormal mitochondria, altered OXPHOS and PDH complex protein levels, and defects in mitochondrial respiration. Overall, we reported the pathological sequelae observed in the skeletal muscles of G93A*SOD1 mice resulting from the whole-body mutant-SOD1 protein expression.

16.
Redox Biol ; 58: 102523, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335762

RESUMO

The recent rise in illicit use of methamphetamine (METH), a highly addictive psychostimulant, is a huge health care burden due to its central and peripheral toxic effects. Mounting clinical studies have noted that METH use in humans is associated with the development of cardiomyopathy; however, preclinical studies and animal models to dissect detailed molecular mechanisms of METH-associated cardiomyopathy development are scarce. The present study utilized a unique very long-access binge and crash procedure of METH self-administration to characterize the sequelae of pathological alterations that occur with METH-associated cardiomyopathy. Rats were allowed to intravenously self-administer METH for 96 h continuous weekly sessions over 8 weeks. Cardiac function, histochemistry, ultrastructure, and biochemical experiments were performed 24 h after the cessation of drug administration. Voluntary METH self-administration induced pathological cardiac remodeling as indicated by cardiomyocyte hypertrophy, myocyte disarray, interstitial and perivascular fibrosis accompanied by compromised cardiac systolic function. Ultrastructural examination and native gel electrophoresis revealed altered mitochondrial morphology and reduced mitochondrial oxidative phosphorylation (OXPHOS) supercomplexes (SCs) stability and assembly in METH exposed hearts. Redox-sensitive assays revealed significantly attenuated mitochondrial respiratory complex activities with a compensatory increase in pyruvate dehydrogenase (PDH) activity reminiscent of metabolic remodeling. Increased autophagy flux and increased mitochondrial antioxidant protein level was observed in METH exposed heart. Treatment with mitoTEMPO reduced the autophagy level indicating the involvement of mitochondrial dysfunction in the adaptive activation of autophagy in METH exposed hearts. Altogether, we have reported a novel METH-associated cardiomyopathy model using voluntary drug seeking behavior. Our studies indicated that METH self-administration profoundly affects mitochondrial ultrastructure, OXPHOS SCs assembly and redox activity accompanied by increased PDH activity that may underlie observed cardiac dysfunction.


Assuntos
Cardiomiopatias , Estimulantes do Sistema Nervoso Central , Metanfetamina , Humanos , Ratos , Animais , Metanfetamina/toxicidade , Estimulantes do Sistema Nervoso Central/farmacologia , Autofagia , Mitocôndrias
17.
Pathophysiology ; 29(3): 570-582, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36136071

RESUMO

Multiple sclerosis (MS) is a leading cause of neurodegenerative disability in younger individuals. When diagnosed early, MS can be managed more effectively, stabilizing clinical symptoms and delaying disease progression. The identification of specific serum biomarkers for early-stage MS could facilitate more successful treatment of this condition. Because MS is an inflammatory disease, we assessed changes in enzymes of the endothelial hydrogen sulfide (H2S) pathway in response to inflammatory cytokines. Blotting analysis was conducted to detect Cystathionine γ-lyase (CSE), Cystathionine beta synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (MST) in human brain microvascular endothelial apical and basolateral microparticles (MPs) and cells following exposure to tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). CSE was increased in MPs and cells by exposure to TNF-α/IFN-γ; CBS was elevated in apical MPs but not in cells or basolateral MPs; MST was not significantly affected by cytokine exposure. To test how our findings relate to MS patients, we evaluated levels of CSE, CBS, and MST in serum samples from healthy control and MS patients. We found significantly decreased levels of CBS and MST (p = 0.0004, 0.009) in MS serum samples, whereas serum levels of CSE were marginally increased (p = 0.06). These observations support increased CSE and lower CBS and MST expression being associated with the vascular inflammation in MS. These changes in endothelial-derived sulfide enzymes at sites of inflammation in the brain may help to explain sulfide-dependent changes in vascular dysfunction/neuroinflammation underlying MS. These findings further support the use of serum samples to assess enzymatic biomarkers derived from circulating MPs. For example, "liquid biopsy" can be an important tool for allowing early diagnosis of MS, prior to the advanced progression of neurodegeneration associated with this disease.

18.
Redox Biol ; 57: 102480, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36167027

RESUMO

Methamphetamine (METH) is an addictive illicit drug used worldwide that causes significant damage to blood vessels resulting in cardiovascular dysfunction. Recent studies highlight increased prevalence of cardiovascular disease (CVD) and associated complications including hypertension, vasospasm, left ventricular hypertrophy, and coronary artery disease in younger populations due to METH use. Here we report that METH administration in a mouse model of 'binge and crash' decreases cardiovascular function via cystathionine gamma lyase (CSE), hydrogen sulfide (H2S), nitric oxide (NO) (CSE/H2S/NO) dependent pathway. METH significantly reduced H2S and NO bioavailability in plasma and skeletal muscle tissues co-incident with a significant reduction in flow-mediated vasodilation (FMD) and blood flow velocity revealing endothelial dysfunction. METH administration also reduced cardiac ejection fraction (EF) and fractional shortening (FS) associated with increased tissue and perivascular fibrosis. Importantly, METH treatment selectively decreased CSE expression and sulfide bioavailability along with reduced eNOS phosphorylation and NO levels. Exogenous sulfide therapy or endothelial CSE transgenic overexpression corrected cardiovascular and associated pathological responses due to METH implicating a central molecular regulatory pathway for tissue pathology. These findings reveal that therapeutic intervention targeting CSE/H2S bioavailability may be useful in attenuating METH mediated cardiovascular disease.

19.
Exp Mol Pathol ; 127: 104815, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35870494

RESUMO

Intracellular Ca2+-calmodulin (CaM) signaling plays an important role in Ca2+-CaM-dependent kinase (CaMKII) and calcineurin (CaN)-mediated cardiac biology. While neurogranin (Ng) is known as a major Ca2+-CaM modulator in the brain, its pathophysiological role in cardiac hypertrophy has never been studied before. In the present study, we report that Ng is expressed in the heart and depletion of Ng dysregulates Ca2+ homeostasis and promotes cardiac failure in mice. 10-month-old Ng null mice demonstrate significantly increased heart-to-body weight ratios compared to wild-type. Using histological approaches, we identified that depletion of Ng increases cardiac hypertrophy, fibrosis, and collagen deposition near perivascular areas in the heart tissue of Ng null mice. Ca2+ spark experiments revealed that cardiac myocytes isolated from Ng null mice have decreased spark frequency and width, while the duration of sparks is significantly increased. We also identified that a lack of Ng increases CaMKIIδ signaling and periostin protein expression in these mouse hearts. Overall, we are the first study to explore how Ng expression in the heart plays an important role in Ca2+ homeostasis in cardiac myocytes as well as the pathophysiology of cardiac hypertrophy and fibrosis.


Assuntos
Cálcio , Neurogranina , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Cardiomegalia/metabolismo , Fibrose , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Neurogranina/genética , Neurogranina/metabolismo
20.
DNA Repair (Amst) ; 116: 103344, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696854

RESUMO

The ataxia-telangiectasia mutated (ATM) protein regulates cell cycle checkpoints, the cellular redox state, and double-stranded DNA break repair. ATM loss causes the disorder ataxia-telangiectasia (A-T), distinguished by ataxia, telangiectasias, dysregulated cellular redox and iron responses, and an increased cancer risk. We examined the sulfur pool in A-T cells, with and without an ATM expression vector. While free and bound sulfide levels were not changed with ATM expression, the acid-labile sulfide faction was significantly increased. ATM expression also increased cysteine desulfurase (NFS1), NFU1 iron-sulfur cluster scaffold homolog protein, and several mitochondrial complex I proteins' expression. Additionally, ATM expression suppressed cystathionine ß-synthase and cystathionine γ-synthase protein expression, cystathionine γ-synthase enzymatic activity, and increased the reduced to oxidized glutathione ratio. This last observation is interesting, as dysregulated glutathione is implicated in A-T pathology. As ATM expression increases the expression of proteins central in initiating 2Fe-2S and 4Fe-4S cluster formation (NFS1 and NFU1, respectively), and the acid-labile sulfide faction is composed of sulfur incorporated into Fe-S clusters, our data indicates that ATM regulates aspects of Fe-S cluster biosynthesis, the transsulfuration pathway, and glutathione redox cycling. Thus, our data may explain some of the redox- and iron-related pathologies seen in A-T.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Ataxia Telangiectasia , Proteínas Ferro-Enxofre , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Liases de Carbono-Enxofre/metabolismo , Glutationa/metabolismo , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...