Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20247379

RESUMO

BackgroundRetrospective observational studies suggest that interleukin-6 (IL-6), C-reactive protein (CRP), lactate dehydrogenase (LDH), ferritin, lymphocytes, monocytes, neutrophils, D-dimer, and platelets are associated with disease progression, treatment outcomes, or both, in patients with COVID-19 pneumonia. We explored these candidate prognostic and predictive biomarkers with efficacy outcomes after treatment with tocilizumab, an anti-IL-6 receptor antibody using data from the COVACTA trial for patients hospitalised with severe COVID-19 pneumonia. MethodsCandidate biomarkers were measured in 295 patients in the tocilizumab arm and 142 patients in the placebo arm. Efficacy outcomes assessed were clinical status on a seven-category ordinal scale (1, discharge; 7, death), mortality, time to hospital discharge, and mechanical ventilation (if not receiving it at randomisation) through day 28. Prognostic and predictive biomarkers were evaluated continuously with proportional odds, binomial or Fine-Gray models, and additional sensitivity analyses. FindingsModelling in the placebo arm showed all candidate biomarkers except LDH and D-dimer were strongly prognostic for day 28 clinical outcomes of mortality, mechanical ventilation, clinical status, and time to hospital discharge. Modelling in the tocilizumab arm showed a predictive value of ferritin for day 28 clinical outcomes of mortality (predictive interaction p=0.03), mechanical ventilation (predictive interaction p=0.01), and clinical status (predictive interaction p=0.02) compared with placebo. InterpretationMultiple biomarkers prognostic for clinical outcomes were confirmed in COVACTA. Ferritin was identified as a predictive biomarker for the effects of tocilizumab in the COVACTA patient population; high ferritin levels were associated with better clinical outcomes for tocilizumab compared with placebo at day 28. RESEARCH IN CONTEXT Evidence before this studyThe efficacy and safety of the anti-interleukin-6 receptor antibody tocilizumab in the treatment of patients hospitalised with COVID-19 pneumonia was investigated in COVACTA, a double-blind, randomised, placebo-controlled trial. The primary endpoint of improved clinical status on a seven-category ordinal scale (1, discharged/ready for discharge; 7, death) at day 28 was not met in this trial. Among the secondary endpoints, no difference in mortality at day 28 was observed, but time to hospital discharge was shorter in the tocilizumab group. Subgroup analysis suggested there might be a treatment benefit in patients grouped according to their ordinal scale category at baseline. We searched PubMed on September 14, 2020, using the terms "tocilizumab AND (COVID-19 OR coronavirus) AND biomarker" with no language or date restrictions. The search retrieved 18 articles, four of which identified laboratory measures as potential biomarkers in patients who received tocilizumab for the treatment of COVID-19 pneumonia. The biomarkers reported in these studies include interleukin-6, C-reactive protein, ferritin, fibrinogen, liver transaminases, lymphocytes, platelets, and D-dimer. However, these previous studies were single-centre, retrospective, observational studies. Larger, prospective, controlled trials are needed to investigate potential prognostic and predictive biomarkers to assess the outcomes and response to treatments for COVID-19. Added value of this studyThis exploratory analysis of data from COVACTA demonstrated interleukin-6, C-reactive protein, ferritin, neutrophils (percentage and absolute count), neutrophil-to-lymphocyte ratio, lymphocytes (percentage and absolute count), monocytes (percentage), and platelets as strong prognostic biomarkers in patients hospitalised with severe COVID-19 pneumonia. More important, ferritin showed predictive value for tocilizumab treatment effects on day 28 clinical outcomes of mortality, mechanical ventilation (among the subgroup of patients not receiving mechanical ventilation at randomisation), and clinical status compared with placebo. Implications of all the available evidenceIn patients with elevated levels of ferritin at baseline, tocilizumab decreased the probability of death, mechanical ventilation, and worsening clinical status at day 28 compared with placebo, suggesting that ferritin might be useful as a predictive biomarker of efficacy outcomes for tocilizumab in patients with severe COVID-19 pneumonia.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20152264

RESUMO

IntroductionThe COVID-19 pandemic has been characterised by significant in-hospital virus transmission and deaths among healthcare workers. Sources of in-hospital transmission are not fully understood, with special precautions currently reserved for procedures previously shown to generate aerosols (particles <5 microns). Pleural procedures are not currently considered AGPs, reflecting a lack of data in this area. MethodsAn underwater seal chest drain bottle (R54500, Rocket Medical UK) was set up inside a 60-litre plastic box and connected via an airtight conduit to a medical air supply. A multichannel particle counter (TSI Aerotrak 9310 Aerosol Monitor) was placed inside the box, allowing measurement of particle count/cubic foot (pc/ft3) within six channel sizes: 0.3-0.5, 0.5-1, 1-3, 3-5, 5-10 and >10 microns. Stabilised particle counts at 1, 3 and 5 L/min were compared by Wilcoxon signed rank test; p-values were Bonferroni-adjusted. Measurements were repeated with a simple anti-viral filter, designed using repurposed materials by the study team, attached to the drain bottle. The pressure within the bottle was measured to assess any effect of the filter on bottle function. ResultsAerosol emissions increased with increasing air flow, with the largest increase observed in smaller particles (0.3-3 microns). Concentration of the smallest particles (0.3-0.5 microns) increased from background levels by 700, 1400 and 2500 pc/ft3 at 1, 3 and 5 L/min, respectively. However, dispersion of particles of all sizes was effectively prevented by use of the viral filter at all flow rates. Use of the filter was associated with a maximum pressure rise of 0.3 cm H2O after 24hours of flow at 5 L/min, suggesting minimal impact on drain function. ConclusionA bubbling chest drain is a source of aerosolised particles, but emission can be prevented using a simple anti-viral filter. These data should be considered when designing measures to reduce in-hospital spread of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA