Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 95(7): 2413-2430, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050779

RESUMO

Hepatic organoids are a recent innovation in in vitro modeling. Initial studies suggest that organoids better recapitulate the liver phenotype in vitro compared to pre-existing proliferative cell models. However, their potential for drug metabolism and detoxification remains poorly characterized, and their global proteome has yet to be compared to their tissue of origin. This analysis is urgently needed to determine what gain-of-function this new model may represent for modeling the physiological and toxicological response of the liver to xenobiotics. Global proteomic profiling of undifferentiated and differentiated hepatic murine organoids and donor-matched livers was, therefore, performed to assess both their similarity to liver tissue, and the expression of drug-metabolizing enzymes and transporters. This analysis quantified 4405 proteins across all sample types. Data are available via ProteomeXchange (PXD017986). Differentiation of organoids significantly increased the expression of multiple cytochrome P450, phase II enzymes, liver biomarkers and hepatic transporters. While the final phenotype of differentiated organoids is distinct from liver tissue, the organoids contain multiple drug metabolizing and transporter proteins necessary for liver function and drug metabolism, such as cytochrome P450 3A, glutathione-S-transferase alpha and multidrug resistance protein 1A. Indeed, the differentiated organoids were shown to exhibit increased sensitivity to midazolam (10-1000 µM) and irinotecan (1-100 µM), when compared to the undifferentiated organoids. The predicted reduced activity of HNF4A and a resulting dysregulation of RNA polymerase II may explain the partial differentiation of the organoids. Although further experimentation, optimization and characterization is needed relative to pre-existing models to fully contextualize their use as an in vitro model of drug-induced liver injury, hepatic organoids represent an attractive novel model of the response of the liver to xenobiotics. The current study also highlights the utility of global proteomic analyses for rapid and accurate evaluation of organoid-based test systems.


Assuntos
Organoides , Proteômica , Animais , Diferenciação Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Camundongos , Organoides/metabolismo
2.
Allergy ; 74(8): 1533-1548, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30844087

RESUMO

BACKGROUND: Research into drug hypersensitivity associated with the expression of specific HLA alleles has focussed on the interaction between parent drug and the HLA with no attention given to reactive metabolites. For this reason, we have studied HLA-B*13:01-linked dapsone hypersensitivity to (a) explore whether the parent drug and/or nitroso metabolite activate T cells and (b) determine whether HLA-B*13:01 is involved in the response. METHODS: Peripheral blood mononuclear cells (PBMC) from six patients were cultured with dapsone and nitroso dapsone, and proliferative responses and IFN-γ release were measured. Dapsone- and nitroso dapsone-specific T-cell clones were generated and phenotype, function, HLA allele restriction, and cross-reactivity assessed. Dapsone intermediates were characterized by mass spectrometry. RESULTS: Peripheral blood mononuclear cells from six patients and cloned T cells proliferated and secreted Th1/2/22 cytokines when stimulated with dapsone (clones: n = 395; 80% CD4+ CXCR3hi CCR4hi , 20% CD8+CXCR3hi CCR4hi CCR6hi CCR9hi CCR10hi ) and nitroso dapsone (clones: n = 399; 78% CD4+, 22% CD8+ with same chemokine receptor profile). CD4+ and CD8+ clones were HLA class II and class I restricted, respectively, and displayed three patterns of reactivity: compound specific, weakly cross-reactive, and strongly cross-reactive. Nitroso dapsone formed dimers in culture and was reduced to dapsone, providing a rationale for the cross-reactivity. T-cell responses to nitroso dapsone were dependent on the formation of a cysteine-modified protein adduct, while dapsone interacted in a labile manner with antigen-presenting cells. CD8+ clones displayed an HLA-B*13:01-restricted pattern of activation. CONCLUSION: These studies describe the phenotype and function of dapsone- and nitroso dapsone-responsive CD4+ and CD8+ T cells from hypersensitive patients. Discovery of HLA-B*13:01-restricted CD8+ T-cell responses indicates that drugs and their reactive metabolites participate in HLA allele-linked forms of hypersensitivity.


Assuntos
Dapsona/farmacologia , Antígenos HLA-B/genética , Hipersensibilidade/etiologia , Ativação Linfocitária/genética , Compostos Nitrosos/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Adulto , Reações Cruzadas , Feminino , Expressão Gênica , Antígenos HLA-B/imunologia , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/metabolismo , Imunofenotipagem , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo
3.
Toxicol In Vitro ; 53: 136-147, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30096366

RESUMO

The importance of mitochondrial toxicity in drug-induced liver injury is well established. The bioenergetic phenotype of the HepaRG cell line was defined in order to assess their suitability as a model of mitochondrial hepatotoxicity. Bioenergetic phenotyping categorised the HepaRG cells as less metabolically active when measured beside the more energetic HepG2 cells. However, inhibition of mitochondrial ATP synthase induced an increase in glycolytic activity of both HepaRG and HepG2 cells suggesting an active Crabtree Effect in both cell lines. The suitability of HepaRG cells for the acute metabolic modification assay as a screen for mitotoxicity was confirmed using a panel of compounds, including both positive and negative mitotoxic compounds. Seahorse respirometry studies demonstrated that a statistically significant decrease in spare respiratory capacity is the first indication of mitochondrial dysfunction. Furthermore, based upon comparing changes in respiratory parameters to those of the positive controls, rotenone and carbonyl cyanide m-chlorophenyl hydrazone, compounds were categorised into two mechanistic groups; inhibitors or uncouplers of the electron transport chain. Overall, the findings from this study have demonstrated that HepaRG cells, despite having different resting bioenergetic phenotype to HepG2 cells are a suitable model to detect drug-induced mitochondrial toxicity with similar detection rates to HepG2 cells.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Metabolismo Energético , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Humanos , L-Lactato Desidrogenase/metabolismo
4.
Toxicol In Vitro ; 46: 189-193, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29024779

RESUMO

The transport of bile acids facilitated by NTCP is an important factor in establishing bile flow. In this study, we examine the kinetics associated with human NTCP-dependent transport of two quantitatively important bile acids comprising the human bile acid pool, chenodeoxycholic acid and glycine-chenodeoxycholate, and secondary bile salt, 3-sulfo-glycolithocholate of potential toxicological significance. The study employed human NTCP overexpressing Chinese Hamster Ovary cells and results compared with taurocholate, a prototypical bile salt commonly used in transporter studies. GCDC and 3S-GLC but not CDCA were transported by NTCP. The efficient uptake of GCDC, TCA and 3S-GLC by NTCP enabled the determination of kinetics. GCDC displayed a lower KM (0.569±0.318µM) than TCA (6.44±3.83µM) and 3S-GLC (3.78±1.17µM). The apparent CLint value for GCDC was 20-fold greater (153±53µl/mg protein/min) than the apparent CLint for TCA (6.92±4.72µl/mg protein/min) and apparent CLint for 3S-GLC (8.05±1.33µl/mg protein/min). These kinetic results provide important complementary data on the substrate selectivity and specificity of NTCP to transport bile acids. NTCP transports GCDC with greater efficiency than TCA and has the same efficacy for 3S-GLC and TCA.


Assuntos
Ácidos e Sais Biliares/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Animais , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Hepatócitos/metabolismo , Humanos , Cinética , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Sódio , Simportadores/genética
5.
Arch Toxicol ; 91(1): 439-452, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27039104

RESUMO

The application of primary human hepatocytes following isolation from human tissue is well accepted to be compromised by the process of dedifferentiation. This phenomenon reduces many unique hepatocyte functions, limiting their use in drug disposition and toxicity assessment. The aetiology of dedifferentiation has not been well defined, and further understanding of the process would allow the development of novel strategies for sustaining the hepatocyte phenotype in culture or for improving protocols for maturation of hepatocytes generated from stem cells. We have therefore carried out the first proteomic comparison of primary human hepatocyte differentiation. Cells were cultured for 0, 24, 72 and 168 h as a monolayer in order to permit unrestricted hepatocyte dedifferentiation, so as to reveal the causative signalling pathways and factors in this process, by pathway analysis. A total of 3430 proteins were identified with a false detection rate of <1 %, of which 1117 were quantified at every time point. Increasing numbers of significantly differentially expressed proteins compared with the freshly isolated cells were observed at 24 h (40 proteins), 72 h (118 proteins) and 168 h (272 proteins) (p < 0.05). In particular, cytochromes P450 and mitochondrial proteins underwent major changes, confirmed by functional studies and investigated by pathway analysis. We report the key factors and pathways which underlie the loss of hepatic phenotype in vitro, particularly those driving the large-scale and selective remodelling of the mitochondrial and metabolic proteomes. In summary, these findings expand the current understanding of dedifferentiation should facilitate further development of simple and complex hepatic culture systems.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos/metabolismo , Farmacologia/métodos , Proteoma/metabolismo , Toxicologia/métodos , Desdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Cinética , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteoma/genética , Reprodutibilidade dos Testes , Rotenona/farmacologia , Desacopladores/farmacologia
6.
Toxicol Sci ; 155(2): 420-431, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27803386

RESUMO

Isoniazid, rifampicin, pyrazinamide, and ethambutol are commonly used for the treatment of tuberculosis. Drug exposure is occasionally associated with liver and/or skin injury. The aim of this study was to determine whether drug-specific T-cells are detectable in patients with adverse reactions and if so characterize the nature of the T-cell response. Peripheral blood mononuclear cells (PBMC) from 6 patients with anti-tuberculosis drug-related adverse reactions (4 liver, 2 skin) were used to detect drug-responsive T-lymphocytes. Positive lymphocyte transformation test and/or ELIspot results were observed with all 6 patients. Over 3400 T-cell clones were generated from isoniazid, rifampicin, pyrazinamide, or ethambutol-treated PBMC. CD4+ clones from all 3 patients were activated to proliferate and secrete cytotoxic mediators (granzyme B, perforin, FasL) and effector (IFN-γ, Il-13) and regulatory (Il-10) cytokines with isoniazid, but not rifampicin, pyrazinamide, or ethambutol. Il-17 was not detected, while only 1 clone secreted Il-22. Isoniazid-responsive clones were not activated with other anti-tuberculosis drugs or isonicotinic acid albumin adducts. Activation of the clones with isoniazid was MHC class II-restricted and dependent on antigen-presenting cells. Most clones were activated rapidly even in the presence of the enzyme inhibitor 1-aminobenzotriazole. However, a time-dependent pathway of activation involving auto-oxidation of isoniazid was also observed. The discovery of isoniazid-specific CD4+ T-cell clones in patients with liver and skin injury suggests that the adaptive immune system is involved in the pathogenesis of both forms of iatrogenic disease.


Assuntos
Antituberculosos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Isoniazida/efeitos adversos , Dermatopatias/imunologia , Linfócitos T/imunologia , Adolescente , Idoso , Antituberculosos/imunologia , Antituberculosos/uso terapêutico , Células Clonais/imunologia , Feminino , Humanos , Isoniazida/imunologia , Isoniazida/uso terapêutico , Tuberculose Latente/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Dermatopatias/induzido quimicamente , Tuberculose Pulmonar/tratamento farmacológico
7.
Toxicol Sci ; 154(2): 416-429, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27637899

RESUMO

A number of serious adverse drug reactions are caused by T cells. An association with HLA alleles has been identified with certain reactions, which makes it difficult to develop standardized preclinical tests to predict chemical liability. We have recently developed a T cell priming assay using the drug metabolite nitroso sulfamethoxazole (SMX-NO). We now report on reproducibility of the assay, establishment of a biobank of PBMC from 1000 HLA-typed volunteers, and generation of antigen-specific responses to a panel of compounds. Forty T cell priming assays were performed with SMX-NO; 5 gave weak responses (1.5-1.9) and 34 showed good (SI 2.0-3.9) or strong responses (SI > 4.0) using readouts for proliferation and cytokine release. Thus, SMX-NO can be used as a model reagent for in vitro T cell activation. Good to strong responses were also generated to haptenic compounds (amoxicillin, piperacillin and Bandrowski's base) that are not associated with an HLA risk allele. Furthermore, responses were detected to carbamazepine (in HLA-B*15:02 donors), flucloxacillin (in 1 HLA-B*57:01 donor) and oxypurinol (in HLA-B*58:01 donors), which are associated with HLA-class I-restricted forms of hypersensitivity. In contrast, naïve T cell priming to ximelagatran, lumiracoxib, and lapatinib (HLA-class II-restricted forms of hypersensitivity) yielded negative results. Abacavir, which activates memory T cells in patients, did not activate naïve T cells from HLA-B*57:01 donors. This work shows that the priming assay can be used to assess primary T cell responses to drugs and to study mechanisms T cell priming for drugs that display HLA class I restriction. Additional studies are required to investigate HLA-class II-restricted reactions.


Assuntos
Hipersensibilidade a Drogas/imunologia , Antígenos HLA/imunologia , Teste de Histocompatibilidade , Leucócitos Mononucleares/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Sulfametoxazol/análogos & derivados , Linfócitos T/efeitos dos fármacos , Testes de Toxicidade/métodos , Adulto , Bancos de Espécimes Biológicos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Hipersensibilidade a Drogas/metabolismo , Feminino , Frequência do Gene , Antígenos HLA/genética , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Medição de Risco , Sulfametoxazol/toxicidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem
8.
Sci Rep ; 5: 13601, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329825

RESUMO

Maximising the use of preclinical murine models of progressive kidney disease as test beds for therapies ideally requires kidney function to be measured repeatedly in a safe, minimally invasive manner. To date, most studies of murine nephropathy depend on unreliable markers of renal physiological function, exemplified by measuring blood levels of creatinine and urea, and on various end points necessitating sacrifice of experimental animals to assess histological damage, thus counteracting the principles of Replacement, Refinement and Reduction. Here, we applied two novel minimally invasive techniques to measure kidney function in SCID mice with adriamycin-induced nephropathy. We employed i) a transcutaneous device that measures the half-life of intravenously administered FITC-sinistrin, a molecule cleared by glomerular filtration; and ii) multispectral optoacoustic tomography, a photoacoustic imaging device that directly visualises the clearance of the near infrared dye, IRDye 800CW carboxylate. Measurements with either technique showed a significant impairment of renal function in experimental animals versus controls, with significant correlations with the proportion of scarred glomeruli five weeks after induction of injury. These technologies provide clinically relevant functional data and should be widely adopted for testing the efficacies of novel therapies. Moreover, their use will also lead to a reduction in experimental animal numbers.


Assuntos
Doxorrubicina/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/fisiopatologia , Testes de Função Renal , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Nefrologia/métodos , Albuminúria/complicações , Animais , Biomarcadores/metabolismo , Peso Corporal , Doxorrubicina/administração & dosagem , Feminino , Fluoresceínas/metabolismo , Meia-Vida , Indóis/metabolismo , Nefropatias/complicações , Cinética , Camundongos Endogâmicos BALB C , Camundongos SCID , Modelos Estatísticos , Oligossacarídeos/metabolismo , Técnicas Fotoacústicas
9.
Toxicology ; 290(2-3): 249-57, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22015589

RESUMO

The genotoxicity of methapyrilne (MP) has been evaluated in a number of assays since it was found to be a rat hepatocarcinogen with subsequent withdrawal as an over-the-counter antihistamine. Whilst it has not been classified as a genotoxin, there are reports of positive findings from mammalian cell gene mutation and transformation assays. To investigate further the genotoxic potential of MP, the alkaline Comet assay was used to evaluate DNA damage both in primary hepatocytes in culture and in vivo in the rat. To confirm bioactivation was required to induce the hepatotoxic mechanism, aminobenzotriazole, a broad spectrum cytochrome P450 enzyme inhibitor was used as a pre-treatment. The levels of glutathione and glutathione disulfide were determined in both hepatocytes in culture and in the liver following in vivo exposure. MP showed significant increases in DNA damage in freshly isolated male rat hepatocyte suspensions that could be significantly reduced by pre-incubation of aminobenzotriazole (ABT). DNA damage showed a marked sex difference, with male hepatocytes being more susceptible, and showing a concurrent depletion of glutathione (GSH) compared with female hepatocytes. Modulation of the GSH levels by diethylmaleate and γ-glutamylcysteinylethyl ester, elevated and reduced the levels of DNA damage, respectively. In the in vivo Comet assay, there was no evidence of DNA damage following MP (150mg/kg p.o) treatment for three consecutive days, although histological and liver enzyme changes were seen. Total protein GSH content was elevated in MP-treated animals and superoxide dismutase levels were increased specifically in periportal regions. Taken together, these data support the potential for MP to induce oxidative stress. The differences in DNA damage detected by the Comet assay in vitro, and in rat liver in vivo, could be attributed to differences in metabolism and response to oxidant insult or the inability of the assay to discriminate damage in a small number of individual cells in the whole liver.


Assuntos
Dano ao DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H1/toxicidade , Metapirileno/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Ensaio Cometa , Feminino , Glutationa/efeitos dos fármacos , Glutationa/metabolismo , Hepatócitos/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Testes de Mutagenicidade , Ratos , Ratos Wistar , Fatores Sexuais , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Triazóis/farmacologia
10.
Eur J Clin Pharmacol ; 66(10): 961-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20694460

RESUMO

Drug-induced liver injury (DILI) is an event that has a detrimental impact on drug development and patient safety; therefore the identification of novel biomarkers that are both sensitive and specific to the liver would have great benefit. Inflammation is known to be associated with human cases of DILI, and given the role of cytokines in modulating the inflammatory response, changes in cytokine expression patterns certainly show promise as potential biomarkers of DILI. Cytokines are interesting candidates for novel biomarkers as they are relatively accessible (by blood sampling) and accurately quantifiable. In particular, recent interest has developed in mechanism-specific, rather than tissue-specific, biomarkers. However, without fully understanding the role of inflammation in DILI and the role of cytokines in modulating the inflammatory response, cytokines may be limited in their use, being either diagnostic of the type of injury that has occurred and/or prognostic of outcome (recovery from DILI, cirrhosis, acute liver failure). Intracellular components released by damaged hepatocytes, although inaccessible and currently difficult to quantify, may be better biomarkers for the prognosis of severity of injury. In both cases there is a pressing need for the development and validation of assays sensitive enough and with a sufficient dynamic range to detect changes upon drug treatment. Although promising candidates are appearing in the literature, much remains to be done to understand the role of inflammation in DILI and the role that a given cytokine has in the inflammatory cascade associated with DILI before cytokines are viewed as biomarkers for DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/sangue , Citocinas/sangue , Fígado/efeitos dos fármacos , Acetaminofen , Anestésicos Inalatórios , Animais , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/complicações , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Citocinas/metabolismo , Modelos Animais de Doenças , Halotano/imunologia , Hepatite Viral Humana/metabolismo , Humanos , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Valor Preditivo dos Testes , Prognóstico , Transdução de Sinais
11.
Toxicol Lett ; 185(3): 153-9, 2009 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-19136049

RESUMO

p-Phenylenediamine (PPD) exposure is associated with T-cell mediated contact dermatitis. T-cells from allergic patients proliferate following exposure to PPD and the oxido-conjugation product Bandrowski's base (BB). Both compounds are classified as sensitizers in the local lymph node assay; however, because of their instability the nature of the antigenic determinant remains ill-defined. The aim of this study was to explore the immunogenic potential of PPD and BB in mice. Spleen cell proliferation and cytokine secretion was measured ex vivo following antigen recall with soluble PPD or BB and either irradiated or glutaraldehyde fixed, antigen pulsed dendritic cells from syngeneic mice. Glutathione was added to certain incubations. LC-MS analysis and solvent extraction were used to monitor the fate of [(14)C]BB in culture and the extent of BB binding, respectively. Spleen cells from BB exposed, but not PPD- or vehicle-exposed, mice proliferated when stimulated with BB. Proliferating cells secreted high levels of IFN-gamma, GM-CSF and IL-2. Stimulation with PPD instigated low levels of proliferation. Irradiated, but not fixed, dendritic cells pulsed with BB stimulated proliferation signifying a classical hapten mechanism involving irreversible BB binding to protein and processing. BB bound preferentially to serum protein when incubated together with cells and serum. Degradation of BB in the presence of glutathione was associated with a stronger stimulation of specific T-cells at higher BB concentrations. These data demonstrate that BB is a potent immunogen in the mouse.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Células Dendríticas/imunologia , Fenilenodiaminas/toxicidade , Baço/imunologia , Linfócitos T/imunologia , Animais , Proteínas Sanguíneas/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Feminino , Glutationa/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Fenilenodiaminas/química , Ligação Proteica , Baço/citologia , Baço/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
12.
Pharmacogenet Genomics ; 16(4): 287-96, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16538175

RESUMO

OBJECTIVES: The use of carbamazepine (CBZ), the most commonly prescribed antiepileptic drug, is hampered by the occurrence of severe, potentially lethal hypersensitivity reactions. The pathogenesis of hypersensitivity is not yet known, but immune mechanisms are involved. Predisposition to CBZ hypersensitivity is likely to be genetically determined, and genes within the major histocompatibility complex (MHC) have been implicated. The heat shock protein (HSP70) gene cluster is located in the MHC class III region. METHODS: Using a case-control study design, we compared 61 patients with CBZ hypersensitivity (22 with a severe reaction) to 44 patients on CBZ with no signs of hypersensitivity and 172 healthy controls. The genotyping strategy involved identification of common and rare single nucleotide polymorphisms (SNPs) within the HSP70 gene cluster by sequencing, estimation of linkage disequilibrium (LD) and haplotype structure, and thereafter, analysis of SNP/haplotype frequencies in the cases and controls. Population substructure was evaluated by genotyping of 34 microsatellites. RESULTS: Twenty-five SNPs were detected across the three HSP70 genes. Analyses revealed that alleles G, T and C at the SNPs HSPA1A +1911 C/G, HSPA1A +438 C/T and HSPA1L +2437 T/C, respectively, were associated with protection from serious hypersensitivity reactions to CBZ, with the associated alleles falling on a common haplotype. We were unable to detect the presence of population stratification in our patients and controls. CONCLUSIONS: Our data show that HSP70 gene variants are associated with serious CBZ hypersensitivity reactions, but whether this is causal or reflects LD with another gene within the MHC requires further study.


Assuntos
Carbamazepina/efeitos adversos , Hipersensibilidade a Drogas/genética , Proteínas de Choque Térmico HSP70/genética , Família Multigênica , Farmacogenética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Criança , Pré-Escolar , Variação Genética , Haplótipos , Humanos , Desequilíbrio de Ligação , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença
13.
Chem Biol Interact ; 147(2): 173-84, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15013819

RESUMO

Arteflene is a synthetic endoperoxide antimalarial. Its peroxide bridge undergoes iron(II)-mediated reduction in vitro which yields a carbon-centered cyclohexyl radical and a mixture of cis- and trans-alpha,beta-unsaturated ketones (enones). The enones are biliary metabolites in rats and therefore surrogate markers of bioactivation. Arteflene is reported to be more cytotoxic to primary rat hepatocytes than some non-endoperoxide antimalarials. Hepatic metabolism of arteflene was investigated in recirculating isolated perfused rat livers, and the drug's metabolism and cytotoxicity were compared using hepatocytes from male rats. Both preparations metabolized [(14)C]arteflene to cis- and trans-[(14)C]enone, 8-hydroxyarteflene glucuronide and an unassigned isomeric glucuronide. During a 2 h liver perfusion, the cis- and trans-enones recovered in bile represented 8.1 +/- 3.4 and 11.3 +/- 4.6% (mean +/- S.D., N=6), respectively, of the [(14)C]arteflene (52 microM) added to the perfusate. After a 3 h incubation of [(14)C]arteflene (10 microM) with hepatocytes in suspension, the cis- and trans-enones comprised, respectively, 14.8 +/- 7.1 and 2.1 +/- 1.0% (N = 4) of the recovered radioactivity; the corresponding data for cultured hepatocytes being 18.6 +/- 6.9 and 3.3 +/- 2.2%. Arteflene was significantly (P < 0.05) toxic to isolated hepatocytes with reference to extramitochondrial reductase activity (tetrazolium reduction) but not enzyme leakage when the cells were exposed to drug concentrations > or =50 microM for 24 h. Cellular glutathione was depleted under these conditions. Therefore arteflene was acutely cytotoxic, though only at relatively high concentrations, when it was metabolized via a pathway which generates carbon-centered radicals.


Assuntos
Antimaláricos/metabolismo , Artemisininas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Estirenos/metabolismo , Animais , Antimaláricos/toxicidade , Artemisininas/toxicidade , Bile/química , Bile/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/toxicidade , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Glutationa/análise , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Técnicas In Vitro , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Perfusão , Ratos , Ratos Wistar , Estirenos/toxicidade
14.
Hepatology ; 32(2): 321-33, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10915739

RESUMO

Exposure of cells to toxic chemical species can result in reduced glutathione (GSH) depletion, generation of free radicals, and/or binding to critical cell determinants. Chemical stress is usually followed by a concerted cellular response aimed at restoring homeostasis, although the precise initial stimulus for the response is unclear. We have focused on one component of this stress response, the up-regulation of gamma-glutamylcysteine synthetase (gamma-GCS) and the preceding molecular events involved in its regulation in an in vivo mouse model. Male CD-1 mice received buthionine sulphoximine (BSO; 7.2 mmol/kg), diethyl maleate (DEM; 4.2 mmol/kg), paracetamol (APAP; 3.5 and 1.0 mmol/kg), or carbon tetrachloride (CCl(4); 1.0 and 0.2 mmol/kg). Biochemical (serum transaminase and hepatic GSH levels) and molecular (c-jun and c-fos messenger RNA [mRNA] levels and activator protein 1 [AP-1] DNA binding activity) parameters were measured, as well as the consequent effects on gamma-GCS levels and activity. All compounds produced GSH depletion, but only the higher doses of APAP and CCl(4) caused liver damage. DEM, APAP, and CCl(4) increased c-jun and c-fos mRNA levels, together with an increase in AP-1 binding; BSO failed to induce AP-1 despite an increase in c-fos. Interestingly, the effects on gamma-GCS varied markedly according to the compound: BSO and DEM increased gamma-GCS enzyme activity, although only DEM, but not BSO, resulted in an increase in gamma-GCS(h) mRNA and protein. In contrast, APAP and CCl(4) both increased gamma-GCS(h) mRNA and protein; however, there was a marked dose-dependent decrease in gamma-GCS activity. These data indicate that the effect of chemical stress on the liver is compound specific and is not merely dependent on depletion of GSH.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/biossíntese , Fígado/efeitos dos fármacos , Acetaminofen/toxicidade , Animais , Butionina Sulfoximina/toxicidade , Tetracloreto de Carbono/toxicidade , Genes fos , Genes jun , Glutamato-Cisteína Ligase/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Maleatos/toxicidade , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...