Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(9): e0034123, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37607055

RESUMO

We describe the genome of a lytic phage EAb13 isolated from sewage, with broad activity against multidrug-resistant Acinetobacter baumannii. EAb13 is an unclassified siphovirus. Its genome consists of 82,411 bp, with 40.15% GC content, 126 protein-coding sequences, 1 tRNA, and 2,177 bp-long direct terminal repeats.

2.
Microbiol Resour Announc ; 12(7): e0019223, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338419

RESUMO

We describe the genome of a lytic phage, ESa2, isolated from environmental water and specific for Staphylococcus aureus. ESa2 belongs to the family Herelleviridae and genus Kayvirus. Its genome consists of 141,828 bp, with 30.25% GC content, 253 predicted protein-coding sequences, 3 tRNAs, and 10,130-bp-long terminal repeats.

3.
Antibiotics (Basel) ; 11(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421303

RESUMO

Shigellosis is a leading global cause of diarrheal disease and travelers' diarrhea now being complicated by the dissemination of antibiotic resistance, necessitating the development of alternative antibacterials such as therapeutic bacteriophages (phages). Phages with lytic activity against Shigella strains were isolated from sewage. The genomes of 32 phages were sequenced, and based on genomic comparisons belong to seven taxonomic genera: Teetrevirus, Teseptimavirus, Kayfunavirus, Tequatrovirus, Mooglevirus, Mosigvirus and Hanrivervirus. Phage host ranges were determined with a diverse panel of 95 clinical isolates of Shigella from Southeast Asia and other geographic regions, representing different species and serotypes. Three-phage mixtures were designed, with one possessing lytic activity against 89% of the strain panel. This cocktail exhibited lytic activity against 100% of S. sonnei isolates, 97.2% of S. flexneri (multiple serotypes) and 100% of S. dysenteriae serotypes 1 and 2. Another 3-phage cocktail composed of two myophages and one podophage showed both a broad host range and the ability to completely sterilize liquid culture of a model virulent strain S. flexneri 2457T. In a Galleria mellonella model of lethal infection with S. flexneri 2457T, this 3-phage cocktail provided a significant increase in survival.

4.
Front Microbiol ; 13: 847563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369448

RESUMO

As marine sediments are buried, microbial communities transition from sulfate-reduction to methane-production after sulfate is depleted. When this biogenic methane diffuses into the overlying sulfate-rich sediments, it forms a sulfate-methane transition zone (SMTZ) because sulfate reducers deplete hydrogen concentrations and make hydrogenotrophic methanogenesis exergonic in the reverse direction, a process called the anaerobic oxidation of methane (AOM). Microbial participation in these processes is often inferred from geochemistry, genes, and gene expression changes with sediment depth, using sedimentation rates to convert depth to time. Less is known about how natural sediments transition through these geochemical states transition in real-time. We examined 16S rRNA gene amplicon libraries and metatranscriptomes in microcosms of anoxic sediment from the White Oak River estuary, NC, with three destructively sampled replicates with methane added (586-day incubations) and three re-sampled un-amended replicates (895-day incubations). Sulfate dropped to a low value (∼0.3 mM) on similar days for both experiments (312 and 320 days, respectively), followed by a peak in hydrogen, intermittent increases in methane-cycling archaea starting on days 375 and 362 (mostly Methanolinea spp. and Methanosaeta spp., and Methanococcoides sp. ANME-3), and a methane peak 1 month later. However, methane δ13C values only show net methanogenesis 6 months after methane-cycling archaea increase and 4 months after the methane peak, when sulfate is consistently below 0.1 mM and hydrogen increases to a stable 0.61 ± 0.13 nM (days 553-586, n = 9). Sulfate-reducing bacteria (mostly Desulfatiglans spp. and Desulfosarcina sp. SEEP-SRB1) increase in relative abundance only during this period of net methane production, suggesting syntrophy with methanogens in the absence of sulfate. The transition from sulfate reduction to methane production in marine sediments occurs through a prolonged period of methane-cycling by methanogens at low sulfate concentrations, and steady growth of sulfate reducers along with methanogens after sulfate is depleted.

5.
Environ Microbiol Rep ; 13(2): 185-194, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462984

RESUMO

ANME-1 archaea subsist on the very low energy of anaerobic oxidation of methane (AOM). Most marine sediments shift from net AOM in the sulfate methane transition zone (SMTZ) to methanogenesis in the methane zone (MZ) below it. In White Oak River estuarine sediments, ANME-1 comprised 99.5% of 16S rRNA genes from amplicons and 100% of 16S rRNA genes from metagenomes of the Methanomicrobia in the SMTZ and 99.9% and 98.3%, respectively, in the MZ. Each of the 16 ANME-1 OTUs (97% similarity) had peaks in the SMTZ that coincided with peaks of putative sulfate-reducing bacteria Desulfatiglans sp. and SEEP-SRB1. In the MZ, ANME-1, but none of the putative sulfate-reducing bacteria or cultured methanogens, increased with depth. Our meta-analysis of public data showed only ANME-1 expressed methanogenic genes during both net AOM and net methanogenesis in an enrichment culture. We conclude that ANME-1 perform AOM in the SMTZ and methanogenesis in the MZ of White Oak River sediments. This metabolic flexibility may expand habitable zones in extraterrestrial environments, since it enables greater energy yields in a fluctuating energetic landscape.


Assuntos
Archaea , Metano , Anaerobiose , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
6.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31324636

RESUMO

Anoxic subsurface sediments contain communities of heterotrophic microorganisms that metabolize organic carbon at extraordinarily low rates. In order to assess the mechanisms by which subsurface microorganisms access detrital sedimentary organic matter, we measured kinetics of a range of extracellular peptidases in anoxic sediments of the White Oak River Estuary, NC. Nine distinct peptidase substrates were enzymatically hydrolyzed at all depths. Potential peptidase activities (Vmax) decreased with increasing sediment depth, although Vmax expressed on a per-cell basis was approximately the same at all depths. Half-saturation constants (Km ) decreased with depth, indicating peptidases that functioned more efficiently at low substrate concentrations. Potential activities of extracellular peptidases acting on molecules that are enriched in degraded organic matter (d-phenylalanine and l-ornithine) increased relative to enzymes that act on l-phenylalanine, further suggesting microbial community adaptation to access degraded organic matter. Nineteen classes of predicted, exported peptidases were identified in genomic data from the same site, of which genes for class C25 (gingipain-like) peptidases represented more than 40% at each depth. Methionine aminopeptidases, zinc carboxypeptidases, and class S24-like peptidases, which are involved in single-stranded-DNA repair, were also abundant. These results suggest a subsurface heterotrophic microbial community that primarily accesses low-quality detrital organic matter via a diverse suite of well-adapted extracellular enzymes.IMPORTANCE Burial of organic carbon in marine and estuarine sediments represents a long-term sink for atmospheric carbon dioxide. Globally, ∼40% of organic carbon burial occurs in anoxic estuaries and deltaic systems. However, the ultimate controls on the amount of organic matter that is buried in sediments, versus oxidized into CO2, are poorly constrained. In this study, we used a combination of enzyme assays and metagenomic analysis to identify how subsurface microbial communities catalyze the first step of proteinaceous organic carbon degradation. Our results show that microbial communities in deeper sediments are adapted to access molecules characteristic of degraded organic matter, suggesting that those heterotrophs are adapted to life in the subsurface.


Assuntos
Estuários , Sedimentos Geológicos/química , Microbiota , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Carbono/química , Processos Heterotróficos , Cinética , Metagenoma , North Carolina , Compostos Orgânicos/química
7.
Appl Environ Microbiol ; 79(24): 7790-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24096423

RESUMO

There is no universally accepted method to quantify bacteria and archaea in seawater and marine sediments, and different methods have produced conflicting results with the same samples. To identify best practices, we compiled data from 65 studies, plus our own measurements, in which bacteria and archaea were quantified with fluorescent in situ hybridization (FISH), catalyzed reporter deposition FISH (CARD-FISH), polyribonucleotide FISH, or quantitative PCR (qPCR). To estimate efficiency, we defined "yield" to be the sum of bacteria and archaea counted by these techniques divided by the total number of cells. In seawater, the yield was high (median, 71%) and was similar for FISH, CARD-FISH, and polyribonucleotide FISH. In sediments, only measurements by CARD-FISH in which archaeal cells were permeabilized with proteinase K showed high yields (median, 84%). Therefore, the majority of cells in both environments appear to be alive, since they contain intact ribosomes. In sediments, the sum of bacterial and archaeal 16S rRNA gene qPCR counts was not closely related to cell counts, even after accounting for variations in copy numbers per genome. However, qPCR measurements were precise relative to other qPCR measurements made on the same samples. qPCR is therefore a reliable relative quantification method. Inconsistent results for the relative abundance of bacteria versus archaea in deep subsurface sediments were resolved by the removal of CARD-FISH measurements in which lysozyme was used to permeabilize archaeal cells and qPCR measurements which used ARCH516 as an archaeal primer or TaqMan probe. Data from best-practice methods showed that archaea and bacteria decreased as the depth in seawater and marine sediments increased, although archaea decreased more slowly.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Técnicas Microbiológicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...