Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 42(2): 765-784, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32144690

RESUMO

Age-related muscle weakness and loss of muscle mass (sarcopenia) is a universal problem in the elderly. Our previous studies indicate that alpha motor neurons (α-MNs) play a critical role in this process. The goal of the current study is to uncover changes in the aging spinal cord that contribute to loss of innervation and the downstream degenerative processes that occur in skeletal muscle. The number of α-MNs is decreased in the spinal cord of wildtype mice during aging, beginning in middle age and reaching a 41% loss by 27 months of age. There is evidence for age-related loss of myelin and mild inflammation, including astrocyte and microglia activation and an increase in levels of sICAM-1. We identified changes in metabolites consistent with compromised neuronal viability, such as reduced levels of N-acetyl-aspartate. Cleaved caspase-3 is more abundant in spinal cord from old mice, suggesting that apoptosis contributes to neuronal loss. RNA-seq analysis revealed changes in the expression of a number of genes in spinal cord from old mice, in particular genes encoding extracellular matrix components (ECM) and a 172-fold increase in MMP-12 expression. Furthermore, blood-spinal cord barrier (BSCB) permeability is increased in old mice, which may contribute to alterations in spinal cord homeostasis and exacerbate neuronal distress. Together, these data show for the first time that the spinal cord undergoes significant changes during aging, including progressive α-MNs loss that is associated with low-grade inflammation, apoptosis, changes in ECM, myelination, and vascular permeability.


Assuntos
Neurônios Motores , Medula Espinal , Envelhecimento , Animais , Astrócitos , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/fisiopatologia
2.
Exp Neurol ; 311: 125-134, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30268766

RESUMO

Loss of the mTOR pathway negative regulator PTEN from hippocampal dentate granule cells leads to neuronal hypertrophy, increased dendritic branching and aberrant basal dendrite formation in animal models. Similar changes are evident in humans with mTOR pathway mutations. These genetic conditions are associated with autism, cognitive dysfunction and epilepsy. Interestingly, humans with mTOR pathway mutations often present with mosaic disruptions of gene function, producing lesions that range from focal cortical dysplasia to hemimegalanecephaly. Whether mTOR-mediated neuronal dysmorphogenesis is impacted by the number of affected cells, however, is not known. mTOR mutations can produce secondary comorbidities, including brain hypertrophy and seizures, which could exacerbate dysmorphogenesis among mutant cells. To determine whether the percentage or "load" of PTEN knockout granule cells impacts the morphological development of these same cells, we generated two groups of PTEN knockout mice. In the first, PTEN deletion rates were held constant, at about 5%, and knockout cell growth over time was assessed. Knockout cells exhibited significant dendritic growth between 7 and 18 weeks, demonstrating that aberrant dendritic growth continues even after the cells reach maturity. In the second group of mice, PTEN was deleted from 2 to 37% of granule cells to determine whether deletion rate was a factor in driving this continued growth. Multivariate analysis revealed that both age and knockout cell load contributed to knockout cell dendritic growth. Although the mechanism remains to be determined, these findings demonstrate that large numbers of mutant neurons can produce self-reinforcing effects on their own growth.


Assuntos
Dendritos/metabolismo , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/deficiência , Serina-Treonina Quinases TOR/metabolismo , Animais , Dendritos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética , Distribuição Aleatória , Serina-Treonina Quinases TOR/genética
3.
J Appl Physiol (1985) ; 125(2): 661-671, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856263

RESUMO

Maintaining proteostasis is a key mechanism for preserving cell function. Exercise-stimulated proteostasis is regulated, in part, by redox-sensitive signaling. Several studies suggest that supplementation with exogenous antioxidants blunts exercise-induced cellular adaptations, although this conclusion lacks consensus. Our group uses a fundamentally different approach to maintain redox balance by treatment with bioactive phytochemicals to activate the transcription factor nuclear factor (erythroid-derived 2)-like 2 and downstream endogenous antioxidant pathways. We hypothesized that vitamin C (VitC) would interfere with redox-sensitive proteostatic mechanisms in skeletal muscle, whereas phytochemical treatment would permit proteostatic maintenance. We measured protein and DNA synthesis in skeletal muscle from high-volume voluntary wheel-running rats. Whereas phytochemical treatment permitted mitochondrial and other proteostatic adaptations to exercise, VitC treatment did not. During an in vitro oxidative challenge, phytochemical treatment helped maintain proteostasis, including the mitochondrial fraction while VitC did not. Our findings support the conclusion that VitC can blunt some of the beneficial adaptations to exercise. We propose that regulation of endogenous antioxidants represents a novel approach to maintain redox balance while still permitting redox-sensitive proteostatic adaptations. NEW & NOTEWORTHY Whether vitamin C blocks aerobic exercise adaptions lacks consensus, perhaps because of approaches that only assess markers of mitochondrial biogenesis. By directly measuring mitochondrial biogenesis, we demonstrate that vitamin C blunts exercise-induced adaptations. Furthermore, we show that treatment with Protandim, a purported nuclear factor (erythroid-derived 2)-like 2 activator that upregulates endogenous antioxidants, permits mitochondrial biogenesis. We confirm that vitamin C blunts aerobic exercise adaptions, whereas Protandim does not, suggesting targeting the endogenous antioxidant network facilitates adaptations to exercise.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Biogênese de Organelas , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
4.
Neurobiol Dis ; 108: 339-351, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28855130

RESUMO

Deletion of the mTOR pathway inhibitor PTEN from postnatally-generated hippocampal dentate granule cells causes epilepsy. Here, we conducted field potential, whole cell recording and single cell morphology studies to begin to elucidate the mechanisms by which granule cell-specific PTEN-loss produces disease. Cells from both male and female mice were recorded to identify sex-specific effects. PTEN knockout granule cells showed altered intrinsic excitability, evident as a tendency to fire in bursts. PTEN knockout granule cells also exhibited increased frequency of spontaneous excitatory synaptic currents (sEPSCs) and decreased frequency of inhibitory currents (sIPSCs), further indicative of a shift towards hyperexcitability. Morphological studies of PTEN knockout granule cells revealed larger dendritic trees, more dendritic branches and an impairment of dendrite self-avoidance. Finally, cells from both female control and female knockout mice received more sEPSCs and more sIPSCs than corresponding male cells. Despite the difference, the net effect produced statistically equivalent EPSC/IPSC ratios. Consistent with this latter observation, extracellularly evoked responses in hippocampal slices were similar between male and female knockouts. Both groups of knockouts were abnormal relative to controls. Together, these studies reveal a host of physiological and morphological changes among PTEN knockout cells likely to underlie epileptogenic activity. SIGNIFICANCE STATEMENT: Hyperactivation of the mTOR pathway is associated with numerous neurological diseases, including autism and epilepsy. Here, we demonstrate that deletion of the mTOR negative regulator, PTEN, from a subset of hippocampal dentate granule impairs dendritic patterning, increases excitatory input and decreases inhibitory input. We further demonstrate that while granule cells from female mice receive more excitatory and inhibitory input than males, PTEN deletion produces mostly similar changes in both sexes. Together, these studies provide new insights into how the relatively small number (≈200,000) of PTEN knockout granule cells instigates the development of the profound epilepsy syndrome evident in both male and female animals in this model.


Assuntos
Hipocampo/metabolismo , Hipocampo/patologia , Neurônios/metabolismo , Neurônios/patologia , PTEN Fosfo-Hidrolase/deficiência , Caracteres Sexuais , Animais , Contagem de Células , Epilepsia/metabolismo , Epilepsia/patologia , Feminino , Imuno-Histoquímica , Masculino , Potenciais da Membrana/fisiologia , Camundongos Knockout , Microscopia Confocal , Inibição Neural/fisiologia , PTEN Fosfo-Hidrolase/genética , Técnicas de Patch-Clamp , Técnicas de Cultura de Tecidos
5.
BMC Physiol ; 15: 4, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26449218

RESUMO

BACKGROUND: Neurogenic pulmonary edema (NPE) is a non-cardiogenic form of pulmonary edema that can occur consequent to central neurologic insults including stroke, traumatic brain injury, and seizure. NPE is a public health concern due to high morbidity and mortality, yet the mechanism(s) are unknown. We hypothesized that NPE, evoked by cerebral hypoxia in the presence of systemic normoxia, would be accompanied by sympathetic activation, oxidative stress, and compensatory antioxidant mechanisms. METHODS: Thirteen Walker hounds were assigned to cerebral hypoxia (SaO2 ~ 55 %) with systemic normoxia (SaO2 ~ 90 %) (CH; n = 6), cerebral and systemic (global) hypoxia (SaO2 ~ 60 %) (GH; n = 4), or cerebral and systemic normoxia (SaO2 ~ 90 %) (CON; n = 3). Femoral venous (CH and CON) perfusate was delivered via cardiopulmonary bypass to the brain and GH was induced by FiO2 = 10 % to maintain the SaO2 at ~60 %. Lung wet to lung dry weight ratios (LWW/LDW) were assessed as an index of pulmonary edema in addition to hemodynamic measurements. Plasma catecholamines were measured as markers of sympathetic nervous system (SNS) activity. Total glutathione, protein carbonyls, and malondialdehyde were assessed as indicators of oxidative stress. Brain and lung compensatory antioxidants were measured with immunoblotting. RESULTS: Compared to CON, LWW/LDW and pulmonary artery pressure were greater in CH and GH. Expression of hemeoxygenase-1 in brain was higher in CH compared to GH and CON, despite no group differences in oxidative damage in any tissue. Catecholamines tended to be higher in CH and GH. CONCLUSION: Cerebral hypoxia, with systemic normoxia, is not systematically associated with an increase in oxidative stress and compensatory antioxidant enzymes in lung, suggesting oxidative stress did not contribute to NPE in lung. However, increased SNS activity may play a role in the induction of NPE during hypoxia.


Assuntos
Circulação Cerebrovascular/fisiologia , Hipóxia Encefálica/metabolismo , Estresse Oxidativo/fisiologia , Edema Pulmonar/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cães , Glutationa/metabolismo , Hemodinâmica/fisiologia , Hipóxia Encefálica/fisiopatologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Malondialdeído/metabolismo , Edema Pulmonar/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia
6.
Free Radic Biol Med ; 56: 102-11, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23201694

RESUMO

Increased production of reactive oxygen species has been implicated in the pathogenesis of cardiovascular disease (CVD), and enhanced endogenous antioxidants have been proposed as a mechanism for regulating redox balance. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcriptional regulator of phase II antioxidant enzymes, and activation of Nrf2 has been suggested to be an important step in attenuating oxidative stress associated with CVD. A well-defined combination of five widely studied medicinal plants derived from botanical sources (Bacopa monniera, Silybum marianum (milk thistle), Withania somnifera (Ashwagandha), Camellia sinensis (green tea), and Curcuma longa (turmeric)) has been shown to activate Nrf2 and induce phase II enzymes through the antioxidant response element. The purpose of these experiments was to determine if treatment of cardiomyocytes with this phytochemical composition, marketed as Protandim, activates Nrf2, induces phase II detoxification enzymes, and protects cardiomyocytes from oxidant-induced apoptosis in a Nrf2-dependent manner. In cultured HL-1 cardiomyocytes, phytochemical treatment was associated with nuclear accumulation of Nrf2, significant induction of phase II enzymes, and concomitant protection against hydrogen peroxide-induced apoptosis. The protection against oxidant stress was abolished when Nrf2 was silenced by shRNA, suggesting that our phytochemical treatment worked through the Nrf2 pathway. Interestingly, phytochemical treatment was found to be a more robust activator of Nrf2 than oxidant treatment, supporting the use of the phytochemicals as a potential treatment to increase antioxidant defenses and protect heart cells against an oxidative challenge.


Assuntos
Regulação Enzimológica da Expressão Gênica , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Regulação para Cima , Animais , Células Cultivadas , Físico-Química , Camundongos , Fator 2 Relacionado a NF-E2/deficiência , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...