Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(9): 4736-4749, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38770011

RESUMO

Gaining insights into the kinetics and the thermodynamic limits of nanostructures in high-temperature reactions is crucial for controlling their unique morphology, phase, and structure. Nanotubes from lanthanide-based misfit-layered compounds (MLCs) have been known for more than a decade and were successfully produced mostly via a chemical vapor transport protocol. The MLC nanotubes show diverse structural arrangements and lattice disorders, which could have a salient impact on their properties. Though their structure and charge transfer properties are reasonably well understood, a lack of information on their thermodynamic and kinetic stability limits their scalable synthesis and their applicability in modern technologies. In this study, the growth, thermodynamic stability, and decomposition kinetics of lanthanide-based misfit nanotubes of two model compounds, i.e., (LaS)1.14TaS2 and (SmS)1.19TaS2 are elucidated in detail. The nanotubes were carefully analyzed via atomic resolution electron microscopy imaging and synchrotron-based X-ray and electron diffraction techniques, and the information on their morphology, phase, and structures was deduced. The key insights gained would help to establish the parameters to explore their physio-chemical properties further. Furthermore, this study sheds light on the complex issue of the high-temperature stability of nanotubes and nanostructures in general.

2.
Nanotechnology ; 35(29)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631325

RESUMO

We report on the fabrication of a novel design of GaAs/(In,Ga)As/GaAs radial nanowire heterostructures on a Si 111 substrate, where, for the first time, the growth of inhomogeneous shells on a lattice mismatched core results in straight nanowires instead of bent. Nanowire bending caused by axial tensile strain induced by the (In,Ga)As shell on the GaAs core is reversed by axial compressive strain caused by the GaAs outer shell on the (In,Ga)As shell. Progressive nanowire bending and reverse bending in addition to the axial strain evolution during the two processes are accessed byin situby x-ray diffraction. The diameter of the core, thicknesses of the shells, as well as the indium concentration and distribution within the (In,Ga)As quantum well are revealed by 2D energy dispersive x-ray spectroscopy using a transmission electron microscope. Shell(s) growth on one side of the core without substrate rotation results in planar-like radial heterostructures in the form of free standing straight nanowires.

3.
ACS Appl Mater Interfaces ; 16(7): 8913-8921, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335318

RESUMO

Mixed-halide perovskites of the composition MAPb(BrxI1-x)3, which seem to exhibit a random and uniform distribution of halide ions in the absence of light, segregate into bromide- and iodide-rich phases under illumination. This phenomenon of halide segregation has been widely investigated in the photovoltaics context since it is detrimental for the material properties and ultimately the device performance of these otherwise very attractive materials. A full understanding of the mechanisms and driving forces has remained elusive. In this work, a study of the crystallization pathways and the mixing behavior during deposition of MAPb(BrxI1-x)3 thin films with varying halide ratios is presented. In situ grazing incidence wide-angle scattering (GIWAXS) reveals the distinct crystallization behavior of mixed-halide perovskite compositions during two different fabrication routes: nitrogen gas-quenching and the lead acetate route. The perovskite phase formation of mixed-halide thin films hints toward a segregation tendency since separate crystallization pathways are observed for iodide- and bromide-rich phases within the mixed compositions. Crystallization of the bromide perovskite phase (MAPbBr3) is already observed during spin coating, while the iodide-based fraction of the composition forms solvent complexes as an intermediate phase, only converting into the perovskite phase upon thermal annealing. These parallel crystallization pathways result in mixed-halide perovskites forming from initially halide-segregated phases only under the influence of heating.

4.
ChemistryOpen ; : e202300103, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088589

RESUMO

Synthesizing intermetallic phases containing noble metals often poses a challenge as the melting points of noble metals often exceed the boiling point of bismuth (1560 °C). Reactions in the solid state generally circumvent this issue but are extremely time consuming. A convenient method to overcome these obstacles is the co-reduction of metal salts in polyols, which can be performed within hours at moderate temperatures and even allows access to metastable phases. However, little attention has been paid to the formation mechanisms of intermetallic particles in polyol reductions. Identifying crucial reaction parameters and finding patterns are key factors to enable targeted syntheses and product design. Here, we chose metastable γ-BiPd as an example to investigate the formation mechanism from mixtures of metal salts in ethylene glycol and to determine critical factors for phase formation. The reaction was also monitored by in situ X-ray diffraction using synchrotron radiation. Products, intermediates and solutions were characterized by (in situ) X-ray diffraction, electron microscopy, and UV-Vis spectroscopy. In the first step of the reaction, elemental palladium precipitates. Increasing temperature induces the reduction of bismuth cations and the subsequent rapid incorporation of bismuth into the palladium cores, yielding the γ-BiPd phase.

5.
J Am Chem Soc ; 145(1): 152-159, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534059

RESUMO

Crystalline coordination polymers with high electrical conductivities and charge carrier mobilities might open new opportunities for electronic devices. However, current solvent-based synthesis methods hinder compatibility with microfabrication standards. Here, we describe a solvent-free chemical vapor deposition method to prepare high-quality films of the two-dimensional conjugated coordination polymer Cu-BHT (BHT = benzenehexanothiolate). This approach involves the conversion of a metal oxide precursor into Cu-BHT nanofilms with a controllable thickness (20-85 nm) and low roughness (<10 nm) through exposure to the vaporized organic linker. Moreover, the restricted metal ion mobility during the vapor-solid reaction enables high-resolution patterning via both bottom-up lithography, including the fabrication of micron-sized Hall bar and electrode patterns to accurately evaluate the conductivity and mobility values of the Cu-BHT films.

6.
Adv Mater ; 35(8): e2207741, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36349824

RESUMO

Switchable metal-organic frameworks (MOFs) change their structure in time and selectively open their pores adsorbing guest molecules, leading to highly selective separation, pressure amplification, sensing, and actuation applications. The 3D engineering of MOFs has reached a high level of maturity, but spatiotemporal evolution opens a new perspective toward engineering materials in the 4th dimension (time) by t-axis design, in essence exploiting the deliberate tuning of activation barriers. This work demonstrates the first example in which an explicit temporal engineering of a switchable MOF (DUT-8, [M1 M2 (2,6-ndc)2 dabco]n , 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4diazabicyclo[2.2.2]octane, M1  = Ni, M2  = Co) is presented. The temporal response is deliberately tuned by variations in cobalt content. A spectrum of advanced analytical methods is presented for analyzing the switching kinetics stimulated by vapor adsorption using in situ time-resolved techniques ranging from ensemble adsorption and advanced synchrotron X-ray diffraction experiments to individual crystal analysis. A novel analysis technique based on microscopic observation of individual crystals in a microfluidic channel reveals the lowest limit for adsorption switching reported so far. Differences in the spatiotemporal response of crystal ensembles originate from an induction time that varies statistically and widens characteristically with increasing cobalt content reflecting increasing activation barriers.

7.
Dalton Trans ; 51(45): 17405-17415, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36326006

RESUMO

The synthesis of intermetallic phases formed from elements with very different melting points is often time and energy consuming, and in extreme cases the evaporation of a reactant may even prevent formation completely. An alternative, facile synthesis approach is the reduction of metal salts in the polyol process, which requires only moderate temperatures and short reaction times. In addition, the starting materials for this procedure are readily available and do not require any special treatment to remove or prevent passivation layers, for example. Although the formation of intermetallic particles via the polyol process is an established method, little attention has been paid to the mechanism behind it. However, it is precisely a deeper understanding of the underlying mechanisms that would enable better and more targeted synthesis planning and product design. Taking the well-known formation of Bi2Rh particles from Bi(NO3)3 and various rhodium salts in ethylene glycol as an example, we studied the chemical process in detail. We investigated the effects of anion type and pH on the polyol reaction. The reaction was also probed by in situ X-ray diffraction using synchrotron radiation. Products, intermediates and solutions were characterized by X-ray and electron diffraction, electron microscopy and optical spectroscopy. In the first step, co-reduction of the metal cations leads to BiRh. Only with increasing reaction temperature, the remaining bismuth cations in the solution are reduced and incorporated into the BiRh particles, leading to a gradual transition from BiRh to α-Bi2Rh.

8.
Chem Commun (Camb) ; 58(75): 10492-10495, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36043355

RESUMO

Herein we analyze the switching kinetics of a breathing framework MIL-53(Al) with respect to different crystallite size regimes. Synchrotron time-resolved powder X-ray diffraction (PXRD) and adsorption rate analysis of n-butane physisorption at 298 K demonstrate the decisive role of crystal size affecting the time domain of breathing transitions in MIL-53(Al).

9.
Chem Mater ; 34(4): 1838-1853, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35237027

RESUMO

Misfit layered compounds (MLCs) MX-TX2, where M, T = metal atoms and X = S, Se, or Te, and their nanotubes are of significant interest due to their rich chemistry and unique quasi-1D structure. In particular, LnX-TX2 (Ln = rare-earth atom) constitute a relatively large family of MLCs, from which nanotubes have been synthesized. The properties of MLCs can be tuned by the chemical and structural interplay between LnX and TX2 sublayers and alloying of each of the Ln, T, and X elements. In order to engineer them to gain desirable performance, a detailed understanding of their complex structure is indispensable. MLC nanotubes are a relative newcomer and offer new opportunities. In particular, like WS2 nanotubes before, the confinement of the free carriers in these quasi-1D nanostructures and their chiral nature offer intriguing physical behavior. High-resolution transmission electron microscopy in conjunction with a focused ion beam are engaged to study SmS-TaS2 nanotubes and their cross-sections at the atomic scale. The atomic resolution images distinctly reveal that Ta is in trigonal prismatic coordination with S atoms in a hexagonal structure. Furthermore, the position of the sulfur atoms in both the SmS and the TaS2 sublattices is revealed. X-ray photoelectron spectroscopy, electron energy loss spectroscopy, and X-ray absorption spectroscopy are carried out. These analyses conclude that charge transfer from the Sm to the Ta atoms leads to filling of the Ta 5d z 2 level, which is confirmed by density functional theory (DFT) calculations. Transport measurements show that the nanotubes are semimetallic with resistivities in the range of 10-4 Ω·cm at room temperature, and magnetic susceptibility measurements show a superconducting transition at 4 K.

10.
Dalton Trans ; 50(47): 17665-17674, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34806720

RESUMO

Intermetallic phases are usually obtained by crystallization from the melt. However, phases containing elements with widely different melting and boiling points, as well as nanoparticles, which provide a high specific surface area, are hardly accessible via such a high-temperature process. The polyol process is one option to circumvent these obstacles by using a solution-based approach at moderate temperatures. In this study, the formation of Bi2Ir nanoparticles in a microwave-assisted polyol process was investigated. Solutions were analyzed using UV-Vis spectroscopy and the reaction was tracked with synchrotron-based in situ powder X-ray diffraction (PXRD). The products were characterized by PXRD and high-resolution transmission electron microscopy. Starting from Bi(NO3)3 and Ir(OAc)3, the new suboxide Bi4Ir2O forms as an intermediate phase at about 160 °C. Its structure was determined by a combination of PXRD and quantum-chemical calculations. Bi4Ir2O decomposes in vacuum at about 250 °C and is reduced to Bi2Ir by hydrogen at 150 °C. At about 240 °C, the polyol process leads to the immediate reduction of the two metal-containing precursors and crystallization of Bi2Ir nanoparticles.

11.
ACS Nano ; 15(8): 13267-13278, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34350766

RESUMO

The role of metal-support epitaxy on shape and size heterogeneity of nanoparticles and their response to gas atmospheres is not very well explored. Here we show that an ensemble of Pd nanoparticles, grown on MgO(001) by deposition under ultrahigh vacuum, mostly consists of two distinctly epitaxially oriented particles, each having a different structural response to redox cycles. X-ray reciprocal space patterns were acquired in situ under oxidizing and reducing environments. Each type of nanoparticle has a truncated octahedral shape, whereby the majority grows with a cube-on-cube epitaxy on the substrate. Less frequently occurring and larger particles have their principal crystal axes rotated ±3.7° with respect to the substrate's. Upon oxidation, the top (001) facets of both types of particles shrink. The relative change of the rotated particles' top facets is much more pronounced. This finding indicates that a larger mass transfer is involved for the rotated particles and that a larger portion of high-index facets forms. On the main facets of the cube-on-cube particles, the oxidation process results in a considerable strain, as concluded from the evolution to largely asymmetric facet scattering signals. The shape and strain responses are reversible upon reduction, either by annealing to 973 K in vacuum or by reducing with hydrogen. The presented results are important for unraveling different elements of heterogeneity and their effect on the performance of real polycrystalline catalysts. It is shown that a correlation can exist between the particle-support epitaxy and redox-cycling-induced shape changes.

12.
Inorg Chem ; 59(13): 8995-9004, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32551552

RESUMO

A new scandium metal-organic framework (Sc-MOF) with the composition of [Sc(OH)(OBA)], denoted as Sc-CAU-21, was prepared under solvothermal reaction conditions using 4,4'-oxidibenzoic acid (H2OBA) as the ligand. Single-crystal structure determination revealed the presence of the new inorganic building unit (IBU) {Sc8(µ-OH)8(O2C)16}. It is composed of cis-connected ScO6 polyhedra forming an eight-membered ring through bridging µ-OH groups. The connection of the IBUs leads to a 3D framework, containing 1D pores with a diameter between 4.2 and 5.6 Å. Pore access is limited by the size of the IBU, and in contrast to the isoreticular aluminum compound Al-CAU-21 [Al(OH)(OBA)], which is nonporous toward nitrogen at 77 K, Sc-CAU-21 exhibits a specific surface area of 610 m2 g-1. The title compound is thermally stable in air up to 350 °C and can be employed as a host for photoluminescent ions. Sc-CAU-21 exhibits a ligand-based blue emission, and (co)substituting Sc3+ ions with Ln3+ ions (Eu3+, Tb3+, and Dy3+) allows the tuning of the emitting color of the phosphor from red to green. Single-phase white-light emission with CIE color coordinates close to the ideal for white-light emission was also achieved. The luminescence property was utilized in combination with powder X-ray diffraction to study in situ the crystallization process of Sc-CAU-21:Tb and Sc-CAU-21:Eu. Both studies indicate a two-step crystallization process, with a crystalline intermediate, prior to the formation of Sc-CAU-21:Ln.

13.
Acta Crystallogr A Found Adv ; 74(Pt 3): 233-244, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29724969

RESUMO

A quantitative theory of Fraunhofer diffraction by right- and left-handed multiwalled cylindrical scroll nanotubes is developed on the basis of the kinematical approach. The proposed theory is mainly dedicated to structural studies of individual nanotubes by the selected-area electron diffraction technique. Strong and diffuse reflections of the scroll nanotube were studied and explicit formulas that govern relations between the direct and reciprocal lattice of the scroll nanotube are achieved.

14.
Acta Crystallogr A Found Adv ; 72(Pt 6): 684-695, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27809208

RESUMO

A quantitative theory of diffraction by right- and left-handed coaxial nanotubes with an ordered structure is developed. Their reciprocal lattices, including pseudo-orthogonal nodes, are studied. The explicit formulas that govern relations between direct and reciprocal lattices of a nanotube are achieved and a simple descriptive tool for diffraction pattern indexing is proposed.

15.
Acta Crystallogr A Found Adv ; 72(Pt 1): 36-49, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26697865

RESUMO

The explicit formulas for atomic coordinates of multiwalled coaxial and cylindrical scroll nanotubes with ordered structure are developed on the basis of a common oblique lattice. According to this approach, a nanotube is formed by transfer of its bulk analogue structure onto a cylindrical surface (with a circular or spiral cross section) and the chirality indexes of the tube are expressed in the number of unit cells. The monoclinic polytypic modifications of ordered coaxial and scroll nanotubes are also discussed and geometrical conditions of their formation are analysed. It is shown that tube radii of ordered multiwalled coaxial nanotubes are multiples of the layer thickness, and the initial turn radius of the orthogonal scroll nanotube is a multiple of the same parameter or its half.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...