Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282673

RESUMO

The milder clinical manifestations of Omicron infection relative to pre-Omicron SARS-CoV-2 raises the possibility that extensive evolution results in reduced pathogenicity. To test this hypothesis, we quantified induction of cell fusion and cell death in SARS-CoV-2 evolved from ancestral virus during long-term infection. Both cell fusion and death were reduced in Omicron BA.1 infection relative to ancestral virus. Evolved virus was isolated at different times during a 6-month infection in an immunosuppressed individual with advanced HIV disease. The virus isolated 16 days post-reported symptom onset induced fusogenicity and cell death at levels similar to BA.1. However, fusogenicity was increased in virus isolated at 6 months post-symptoms to levels intermediate between BA.1 and ancestral SARS-CoV-2. Similarly, infected cell death showed a graded increase from earlier to later isolates. These results may indicate that, at least by the cellular measures used here, evolution in long-term infection does not necessarily attenuate the virus.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-496062

RESUMO

BackgroundHIV infection dysregulates the B cell compartment, affecting memory B cell formation and the antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections. MethodsWe compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing and regulatory features. ResultsThis revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal center (GC) activity, homing capacity and class-switching responses, with increased PD-L1 expression, and decreased Tfh frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in activated double negative (DN2) and activated naive B cells, which correlated with anti-RBD-titres in these individuals. An elevated SARS-CoV-2 specific EF response in PLWH was confirmed using viral spike and RBD bait proteins. ConclusionsDespite similar disease severity, these trends were highest in participants with uncontrolled HIV, implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as new variants emerge. FundingThis work was supported by a grant from the Wellcome Trust to the Africa Health Research Institute (Wellcome Trust Strategic Core Award [grant number 201433/Z/16/Z]). Additional funding was received from the South African Department of Science and Innovation through the National Research Foundation (South African Research Chairs Initiative, [grant number 64809]), and the Victor Daitz Foundation.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274477

RESUMO

The SARS-CoV-2 Omicron (B.1.1.529) variant first emerged as the BA.1 sub-lineage, with extensive escape from neutralizing immunity elicited by previous infection with other variants, vaccines, or combinations of both1,2. Two new sub-lineages, BA.4 and BA.5, are now emerging in South Africa with changes relative to BA.1, including L452R and F486V mutations in the spike receptor binding domain. We isolated live BA.4 and BA.5 viruses and tested them against neutralizing immunity elicited to BA.1 infection in participants who were Omicron/BA.1 infected but unvaccinated (n=24) and participants vaccinated with Pfizer BNT162b2 or Johnson and Johnson Ad26.CoV.2S with breakthrough Omicron/BA.1 infection (n=15). In unvaccinated individuals, FRNT50, the inverse of the dilution for 50% neutralization, declined from 275 for BA.1 to 36 for BA.4 and 37 for BA.5, a 7.6 and 7.5-fold drop, respectively. In vaccinated BA.1 breakthroughs, FRNT50 declined from 507 for BA.1 to 158 for BA.4 (3.2-fold) and 198 for BA.5 (2.6-fold). Absolute BA.4 and BA.5 neutralization levels were about 5-fold higher in this group versus unvaccinated BA.1 infected participants. The observed escape of BA.4 and BA.5 from BA.1 elicited immunity is more moderate than of BA.1 against previous immunity1,3. However, the low absolute neutralization levels for BA.4 and BA.5, particularly in the unvaccinated group, are unlikely to protect well against symptomatic infection4.This may indicate that, based on neutralization escape, BA.4 and BA.5 have potential to result in a new infection wave.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273711

RESUMO

Omicron (B.1.1.529) shows extensive escape from vaccine immunity, although vaccination reduces severe disease and death1. Boosting with vaccines incorporating variant spike sequences could possibly broaden immunity2. One approach to choose the variant may be to measure immunity elicited by vaccination combined with variant infection. Here we investigated Omicron neutralization in people infected with the Beta (B.1.351) variant and subsequently vaccinated with Pfizer BNT162b2. We observed that Beta infection alone elicited poor Omicron cross-neutralization, similar to what we previously found3 with BNT162b2 vaccination alone or in combination with ancestral or Delta virus infection. In contrast, Beta infection combined with BNT162b2 vaccination elicited neutralization with substantially lower Omicron escape.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-484088

RESUMO

Exposure histories to SARS-CoV-2 variants and vaccinations will shape the specificity of antibody responses. To understand the specificity of Delta-elicited antibody immunity, we characterize the polyclonal antibody response elicited by primary or mRNA vaccine-breakthrough Delta infections. Both types of infection elicit a neutralizing antibody response focused heavily on the receptor-binding domain (RBD). We use deep mutational scanning to show that mutations to the RBDs class 1 and class 2 epitopes, including sites 417, 478, and 484-486 often reduce binding of these Delta-elicited antibodies. The anti-Delta antibody response is more similar to that elicited by early 2020 viruses than the Beta variant, with mutations to the class 1 and 2, but not class 3 epitopes, having the largest effects on polyclonal antibody binding. In addition, mutations to the class 1 epitope (e.g., K417N) tend to have larger effects on antibody binding and neutralization in the Delta spike than in the D614G spike, both for vaccine- and Delta-infection-elicited antibodies. These results help elucidate how the antigenic impacts of SARS-CoV-2 mutations depend on exposure history.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268380

RESUMO

The SARS-CoV-2 Omicron variant has multiple Spike (S) protein mutations that contribute to escape from the neutralizing antibody responses, and reducing vaccine protection from infection. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. We assessed the ability of T cells to react with Omicron spike in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, and in unvaccinated convalescent COVID-19 patients (n = 70). We found that 70-80% of the CD4 and CD8 T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar to that of the Beta and Delta variants, despite Omicron harbouring considerably more mutations. Additionally, in Omicron-infected hospitalized patients (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those found in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). These results demonstrate that despite Omicrons extensive mutations and reduced susceptibility to neutralizing antibodies, the majority of T cell response, induced by vaccination or natural infection, cross-recognises the variant. Well-preserved T cell immunity to Omicron is likely to contribute to protection from severe COVID-19, supporting early clinical observations from South Africa.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267417

RESUMO

The emergence of SARS-CoV-2 Omicron, first identified in Botswana and South Africa, may compromise vaccine effectiveness and the ability of antibodies triggered by previous infection to protect against re-infection (1). Here we investigated whether Omicron escapes antibody neutralization in South Africans, either previously SARS-CoV-2 infected or uninfected, who were vaccinated with Pfizer BNT162b2. We also investigated if Omicron requires the ACE2 receptor to infect cells. We isolated and sequence confirmed live Omicron virus from an infected person in South Africa and compared plasma neutralization of this virus relative to an ancestral SARS-CoV-2 strain with the D614G mutation, observing that Omicron still required ACE2 to infect. For neutralization, blood samples were taken soon after vaccination, so that vaccine elicited neutralization was close to peak. Neutralization capacity of the D614G virus was much higher in infected and vaccinated versus vaccinated only participants but both groups had 22-fold Omicron escape from vaccine elicited neutralization. Previously infected and vaccinated individuals had residual neutralization predicted to confer 73% protection from symptomatic Omicron infection, while those without previous infection were predicted to retain only about 35%. Both groups were predicted to have substantial protection from severe disease. These data support the notion that high neutralization capacity elicited by a combination of infection and vaccination, and possibly boosting, could maintain reasonable effectiveness against Omicron. A waning neutralization response is likely to decrease vaccine effectiveness below these estimates. However, since protection from severe disease requires lower neutralization levels and involves T cell immunity, such protection may be maintained.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-464114

RESUMO

Many SARS-CoV-2 variants have mutations at key sites targeted by antibodies. However, it is unknown if antibodies elicited by infection with these variants target the same or different regions of the viral spike as antibodies elicited by earlier viral isolates. Here we compare the specificities of polyclonal antibodies produced by humans infected with early 2020 isolates versus the B.1.351 variant of concern (also known as Beta or 20H/501Y.V2), which contains mutations in multiple key spike epitopes. The serum neutralizing activity of antibodies elicited by infection with both early 2020 viruses and B.1.351 is heavily focused on the spike receptor-binding domain (RBD). However, within the RBD, B.1.351-elicited antibodies are more focused on the "class 3" epitope spanning sites 443 to 452, and neutralization by these antibodies is notably less affected by mutations at residue 484. Our results show that SARS-CoV-2 variants can elicit polyclonal antibodies with different immunodominance hierarchies.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264519

RESUMO

BackgroundPeople living with HIV (PLWH) have been reported to have an increased risk of more severe COVID-19 disease outcome and an increased risk of death relative to HIV-uninfected individuals. Here we assessed the ability of the Johnson and Johnson Ad26.CoV2.S vaccine to elicit neutralizing antibodies to the Delta variant in PLWH relative to HIV-uninfected individuals. We also compared the neutralization after vaccination to neutralization elicited by SARS-CoV-2 infection only in HIV-uninfected, suppressed HIV PLWH, and PLWH with detectable HIV viremia. MethodsWe enrolled 26 PLWH and 73 HIV-uninfected participants from the SISONKE phase 3b open label South African clinical trial of the Ad26.CoV2.S vaccine in health care workers (HCW). Enrollment was a median 56 days (range 19-98 days) post-vaccination and PLWH in this group had well controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. This group consisted of 34 PLWH and 28 HIV-uninfected individuals. 10 of the 34 (29%) SARS-CoV-2 infected only PLWH had detectable HIV viremia. We used records of a positive SARS-CoV-2 qPCR result, or when a positive result was absent, testing for SARS-CoV-2 nucleocapsid antibodies, to determine which vaccinated participants were SARS-CoV-2 infected prior to vaccination. Neutralization capacity was assessed using participant plasma in a live virus neutralization assay of the Delta SARS-CoV-2 variant currently dominating infections in South Africa. This study was approved by the Biomedical Research Ethics Committee at the University of KwaZulu-Natal (reference BREC/00001275/2020). FindingsThe majority (68%) of Ad26.CoV2.S vaccinated HCW were found to be previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared to the infected only group (GMT=306 versus 36, p<0.0001) and 26-fold higher relative to the vaccinated only group (GMT=12, p<0.0001). No significant difference in Delta variant neutralization capacity was observed in vaccinated and previously SARS-CoV-2 infected PLWH relative to vaccinated and previously SARS-CoV-2 infected, HIV-uninfected participants (GMT=307 for HIV-uninfected, 300 for PLWH, p=0.95). SARS-CoV-2 infected, unvaccinated PLWH showed 7-fold reduced neutralization of the Delta variant relative to HIV-uninfected participants (GMT=105 for HIV-uninfected, 15 for PLWH, p=0.001). There was a higher frequency of non-responders in PLWH relative to HIV-uninfected participants in the SARS-CoV-2 infected unvaccinated group (27% versus 0%, p=0.0029) and 60% of HIV viremic versus 13% of HIV suppressed PLWH were non-responders (p=0.0088). In contrast, the frequency of non-responders was low in the vaccinated/infected group, and similar between HIV-uninfected and PLWH. Vaccinated only participants showed a low neutralization of the Delta variant, with a stronger response in PLWH (GMT=6 for HIV-uninfected, 73 for PLWH, p=0.02). InterpretationThe neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well controlled HIV was not inferior to HIV-uninfected study participants. In SARS-CoV-2 infected and non-vaccinated participants, the presence of HIV infection reduced the neutralization response to SARS-CoV-2 infection, and this effect was strongest in PLWH with detectable HIV viremia FundingSouth African Medical Research Council, The Bill & Melinda Gates Foundation.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263564

RESUMO

Characterizing SARS-CoV-2 evolution in specific geographies may help predict the properties of variants coming from these regions. We mapped neutralization of a SARS-CoV-2 strain that evolved over 6 months from the ancestral virus in a person with advanced HIV disease. Infection was before the emergence of the Beta variant first identified in South Africa, and the Delta variant. We compared early and late evolved virus to the ancestral, Beta, Alpha, and Delta viruses and tested against convalescent plasma from ancestral, Beta, and Delta infections. Early virus was similar to ancestral, whereas late virus was similar to Beta, exhibiting vaccine escape and, despite pre-dating Delta, strong escape of Delta-elicited neutralization. This example is consistent with the notion that variants arising in immune-compromised hosts, including those with advanced HIV disease, may evolve immune escape of vaccines and enhanced escape of Delta immunity, with implications for vaccine breakthrough and reinfections. HighlightsO_LIA prolonged ancestral SARS-CoV-2 infection pre-dating the emergence of Beta and Delta resulted in evolution of a Beta-like serological phenotype C_LIO_LISerological phenotype includes strong escape from Delta infection elicited immunity, intermediate escape from ancestral virus immunity, and weak escape from Beta immunity C_LIO_LIEvolved virus showed substantial but incomplete escape from antibodies elicited by BNT162b2 vaccination C_LI Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=110 SRC="FIGDIR/small/21263564v2_ufig1.gif" ALT="Figure 1"> View larger version (18K): org.highwire.dtl.DTLVardef@1194bfdorg.highwire.dtl.DTLVardef@1cbe318org.highwire.dtl.DTLVardef@aa74f8org.highwire.dtl.DTLVardef@e57969_HPS_FORMAT_FIGEXP M_FIG C_FIG

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-446516

RESUMO

Viruses increase the efficiency of close-range transmission between cells by manipulating cellular physiology and behavior, and SARS-CoV-2 uses cell fusion as one mechanism for cell-to-cell spread. Here we visualized infection using time-lapse microscopy of a human lung cell line and used live virus neutralization to determine the sensitivity of SARS-CoV-2 cell-to-cell spread to neutralizing antibodies. SARS-CoV-2 infection rapidly led to cell fusion, forming multinucleated cells with clustered nuclei which started to be detected at 6h post-infection. To compare sensitivity of cell-to-cell spread to neutralization, we infected either with cell-free virus or with single infected cells expressing on their surface the SARS-CoV-2 spike protein. We tested two variants of SARS-CoV-2: B.1.117 containing only the D614G substitution, and the escape variant B.1.351. We used the much smaller area of single infected cells relative to infection foci to exclude any input infected cells which did not lead to transmission. The monoclonal antibody and convalescent plasma we tested neutralized cell-free SARS-CoV-2, with the exception of B.1.351 virus, which was poorly neutralized with plasma from non-B.1.351 infections. In contrast, cell-to-cell spread of SARS-CoV-2 showed no sensitivity to monoclonal antibody or convalescent plasma neutralization. These observations suggest that, once cells are infected, SARS-CoV-2 may be more difficult to neutralize in cell types and anatomical compartments permissive for cell-to-cell spread.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21258228

RESUMO

While most people effectively clear SARS-CoV-2, there are several reports of prolonged infection in immunosuppressed individuals. Here we present a case of prolonged infection of greater than 6 months with shedding of high titter SARS-CoV-2 in an individual with advanced HIV and antiretroviral treatment failure. Through whole genome sequencing at multiple time-points, we demonstrate the early emergence of the E484K substitution associated with escape from neutralizing antibodies, followed by other escape mutations and the N501Y substitution found in most variants of concern. This provides support to the hypothesis of intra-host evolution as one mechanism for the emergence of SARS-CoV-2 variants with immune evasion properties.

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250224

RESUMO

SARS-CoV-2 variants of concern (VOC) have arisen independently at multiple locations and may reduce efficacy of current vaccines targeted at the spike glycoprotein. We re-cently described the emergence of VOC in South Africa (501Y.V2 or PANGO lineage B.1.351) with mutations in the spike receptor-binding domain (RBD) and N-terminal domain (NTD). Here, using a live virus neutralization assay (LVNA), we compared neutralization of a first wave virus (B.1.1.117) versus the 501Y.V2 variant using plasma collected from adults hospitalized with COVID-19 from two South African infection waves, with the second wave dominated by 501Y.V2 infections. Sequencing demonstrated that infections in first wave plasma donors were with viruses harbouring none of the 501Y.V2-defining RBD or NTD mutations, except for one with E484K. 501Y.V2 virus was effectively neutralized by plasma from second wave infections and first wave virus was effectively neutralized by first wave plasma. In cross-neutralization, 501Y.V2 virus was poorly neutralized by first wave plasma, with an 8.4-fold drop in neutralization relative to first wave virus and a 15.1-fold drop relative to 501Y.V2 neutralization by second wave plasma. In contrast, second wave plasma neutralization of first wave virus was more effective, showing 4.1-fold decline relative to 501Y.V2 virus neutralization and 2.3-fold decline relative to first wave plasma neutralization. While we only tested one plasma elicited by E484K alone, this potently neutralized both variants. The observed effective neutralization of first wave virus by 501Y.V2 infection elicited plasma provides preliminary evidence that vaccines based on VOC sequences could retain activity against other circulating SARS-CoV-2 lineages.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20236828

RESUMO

There are conflicting reports on the effects of HIV on COVID-19. Here we analyzed disease severity and immune cell changes during and after SARS-CoV-2 infection in 236 participants from South Africa, of which 39% were people living with HIV (PLWH), during the first and second ({beta} dominated) infection waves. The second wave had more PLWH requiring supplemental oxygen relative to HIV negative participants. Higher disease severity was associated with low CD4 T cell counts and higher neutrophil to lymphocyte ratios (NLR). Yet, CD4 counts recovered and NLR stabilized after SARS-CoV-2 clearance in wave 2 infected PLWH, arguing for an interaction between SARS-CoV-2 and HIV infection leading to low CD4 and high NLR. The first infection wave, where severity in HIV negative and PLWH was similar, still showed some HIV modulation of SARS-CoV-2 immune responses. Therefore, HIV infection can synergize with the SARS-CoV-2 variant to change COVID-19 outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...