Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 25(11): 333, 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31705202

RESUMO

Most of the gas enters into a small portion of the rotating cylinder by increasing the rotational speed in a rotating cylinder. Navier-Stokes equations were used to evaluate gas behavior in this area. In this paper, the mass source calculated by the DSMC method at the boundary of the two regions has been used in the Onsager-Pancake equation and finite difference method was used to solve this equation. One of the assumed flow functions taking into account the effects of the scoop and thermal driving is the Olander's flow function. By combining the flow function that resulted from the Onsager-Pancake equation and the Olander's flow function, a new flow function is suggested, that in addition to applying the effect of thermal and mechanical driving, the feed driving added to it with the DSMC method. The results obtained using this new flow function in the modified diffusion equation by Onsager-Cohen, showing the resulted optimal separation power from that in comparison to the Olander's function occurs in a state where thermal driving is insignificant and scoop driving has increased. The effects of scoop drive have increased by increasing the feed value with the new flow function. Furthermore, the diffusion equations have been solved for 235UF6 and 238UF6 using the new flow function and it has been calculated the separation parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...