Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 911097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747317

RESUMO

Approximately 3.4 billion people are at risk of malaria, a disease caused by infection with Plasmodium spp. parasites, which are transmitted by Anopheles mosquitoes. Individuals with severe falciparum malaria often exhibit changes in circulating blood levels of biogenic amines, including reduced serotonin or 5-hydroxytryptamine (5-HT), and these changes are associated with disease pathology. In insects, 5-HT functions as an important neurotransmitter for many behaviors and biological functions. In Anopheles stephensi, we show that 5-HT is localized to innervation in the head, thorax, and midgut, suggesting a gut-to-brain signaling axis that could support the effects of ingested 5-HT on mosquito biology and behavioral responses. Given the changes in blood levels of 5-HT associated with severe malaria and the key roles that 5-HT plays in insect neurophysiology, we investigated the impact of ingesting blood with healthy levels of 5-HT (1.5 µM) or malaria-associated levels of 5-HT (0.15 µM) on various aspects of A. stephensi biology. In these studies, we provisioned 5-HT and monitored fecundity, lifespan, flight behavior, and blood feeding of A. stephensi. We also assessed the impact of 5-HT ingestion on infection of A. stephensi with the mouse malaria parasite Plasmodium yoelii yoelii 17XNL and the human malaria parasite Plasmodium falciparum. Our data show that ingestion of 5-HT associated with severe malaria increased mosquito flight velocity and investigation of visual objects in response to host odor (CO2). 5-HT ingestion in blood at levels associated with severe malaria also increased the tendency to take a second blood meal 4 days later in uninfected A. stephensi. In mosquitoes infected with P. y. yoelii 17XNL, feeding tendency was decreased when midgut oocysts were present but increased when sporozoites were present. In addition to these effects, treatment of A. stephensi with 5-HT associated with severe malaria increased infection success with P. y. yoelii 17XNL compared to control, while treatment with healthy levels of 5-HT decreased infection success with P. falciparum. These changes in mosquito behavior and infection success could be used as a basis to manipulate 5-HT signaling in vector mosquitoes for improved control of malaria parasite transmission.

2.
J Neurosci ; 38(31): 6921-6932, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29959237

RESUMO

Muscarinic receptor antagonists act as potent inducers of oligodendrocyte differentiation and accelerate remyelination. However, the use of muscarinic antagonists in the clinic is limited by poor understanding of the operant receptor subtype, and questions regarding possible species differences between rodents and humans. Based on high selective expression in human oligodendrocyte progenitor cells (OPCs), we hypothesized that M3R is the functionally relevant receptor. Lentiviral M3R knockdown in human primary CD140a/PDGFαR+ OPCs resulted in enhanced differentiation in vitro and substantially reduced the calcium response following muscarinic agonist treatment. Importantly, following transplantation in hypomyelinating shiverer/rag2 mice, M3R knockdown improved remyelination by human OPCs. Furthermore, conditional M3R ablation in adult NG2-expressing OPCs increased oligodendrocyte differentiation and led to improved spontaneous remyelination in mice. Together, we demonstrate that M3R receptor mediates muscarinic signaling in human OPCs that act to delay differentiation and remyelination, suggesting that M3 receptors are viable targets for human demyelinating disease.SIGNIFICANCE STATEMENT The identification of drug targets aimed at improving remyelination in patients with demyelination disease is a key step in development of effective regenerative therapies to treat diseases, such as multiple sclerosis. Muscarinic receptor antagonists have been identified as effective potentiators of remyelination, but the receptor subtypes that mediate these receptors are unclear. In this study, we show that genetic M3R ablation in both mouse and human cells results in improved remyelination and is mediated by acceleration of oligodendrocyte commitment from oligodendrocyte progenitor cells. Therefore, M3R represents an attractive target for induced remyelination in human disease.


Assuntos
Bainha de Mielina/fisiologia , Neurogênese/fisiologia , Células Precursoras de Oligodendrócitos/fisiologia , Receptor Muscarínico M3/fisiologia , Remielinização/fisiologia , Animais , Transplante de Tecido Encefálico , Sinalização do Cálcio , Células Cultivadas , Transplante de Tecido Fetal , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Prosencéfalo/embriologia , Prosencéfalo/transplante , Interferência de RNA , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inibidores , Medula Espinal/química , Medula Espinal/ultraestrutura
3.
J Neurosci ; 35(8): 3676-88, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716865

RESUMO

Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a(+)O4(+) cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors.


Assuntos
Células-Tronco Fetais/citologia , Antagonistas Muscarínicos/farmacologia , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Quinuclidinas/farmacologia , Regeneração , Tetra-Hidroisoquinolinas/farmacologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Células-Tronco Fetais/efeitos dos fármacos , Células-Tronco Fetais/metabolismo , Células-Tronco Fetais/transplante , Humanos , Masculino , Camundongos , Agonistas Muscarínicos/farmacologia , Bainha de Mielina/genética , Neurogênese , Antígenos O/genética , Antígenos O/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/transplante , Prosencéfalo/citologia , Prosencéfalo/embriologia , Receptor Muscarínico M3 , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Succinato de Solifenacina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...