Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4104, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914718

RESUMO

Bacterial resistance towards antibiotics is a major global health issue. Very few novel antimicrobial agents and therapies have been made available for clinical use during the past decades, despite an increasing need. Antimicrobial peptides have been intensely studied, many of which have shown great promise in vitro. We have previously demonstrated that the bacteriocin Plantaricin NC8 αß (PLNC8 αß) from Lactobacillus plantarum effectively inhibits Staphylococcus spp., and shows little to no cytotoxicity towards human keratinocytes. However, due to its limitations in inhibiting gram-negative species, the aim of the present study was to identify novel antimicrobial peptidomimetic compounds with an enhanced spectrum of activity, derived from the ß peptide of PLNC8 αß. We have rationally designed and synthesized a small library of lipopeptides with significantly improved antimicrobial activity towards both gram-positive and gram-negative bacteria, including the ESKAPE pathogens. The lipopeptides consist of 16 amino acids with a terminal fatty acid chain and assemble into micelles that effectively inhibit and kill bacteria by permeabilizing their cell membranes. They demonstrate low hemolytic activity and liposome model systems further confirm selectivity for bacterial lipid membranes. The combination of lipopeptides with different antibiotics enhanced the effects in a synergistic or additive manner. Our data suggest that the novel lipopeptides are promising as future antimicrobial agents, however additional experiments using relevant animal models are necessary to further validate their in vivo efficacy.


Assuntos
Antibacterianos , Bacteriocinas , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Bacteriocinas/química , Testes de Sensibilidade Microbiana
2.
Mater Today Bio ; 19: 100574, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36852226

RESUMO

The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.

3.
PLoS One ; 17(11): e0278419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36449554

RESUMO

Potent broad-spectrum antiviral agents are urgently needed to combat existing and emerging viral infections. This is particularly important considering that vaccine development is a costly and time consuming process and that viruses constantly mutate and render the vaccine ineffective. Antimicrobial peptides (AMP), such as bacteriocins, are attractive candidates as antiviral agents against enveloped viruses. One of these bacteriocins is PLNC8 αß, which consists of amphipathic peptides with positive net charges that display high affinity for negatively charged pathogen membrane structures, including phosphatidylserine rich lipid membranes of viral envelopes. Due to the morphological and physiological differences between viral envelopes and host cell plasma membranes, PLNC8 αß is thought to have high safety profile by specifically targeting viral envelopes without effecting host cell membranes. In this study, we have tested the antiviral effects of PLNC8 αß against the flaviviruses Langat and Kunjin, coronavirus SARS-CoV-2, influenza A virus (IAV), and human immunodeficiency virus-1 (HIV-1). The concentration of PLNC8 αß that is required to eliminate all the infective virus particles is in the range of nanomolar (nM) to micromolar (µM), which is surprisingly efficient considering the high content of cholesterol (8-35%) in their lipid envelopes. We found that viruses replicating in the endoplasmic reticulum (ER)/Golgi complex, e.g. SARS-CoV-2 and flaviviruses, are considerably more susceptible to PLNC8 αß, compared to viruses that acquire their lipid envelope from the plasma membrane, such as IAV and HIV-1. Development of novel broad-spectrum antiviral agents can significantly benefit human health by rapidly and efficiently eliminating infectious virions and thereby limit virus dissemination and spreading between individuals. PLNC8 αß can potentially be developed into an effective and safe antiviral agent that targets the lipid compartments of viral envelopes of extracellular virions, more or less independent of virus antigenic mutations, which faces many antiviral drugs and vaccines.


Assuntos
Bacteriocinas , COVID-19 , Vírus da Encefalite Transmitidos por Carrapatos , HIV-1 , Vírus da Influenza A , Humanos , Antivirais/farmacologia , Bacteriocinas/farmacologia , Lipídeos , SARS-CoV-2
4.
BMC Oral Health ; 21(1): 639, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911531

RESUMO

BACKGROUND: Dysbiosis in subgingival microbial communities, resulting from increased inflammatory transudate from the gingival tissues, is an important factor in initiation and development of periodontitis. Dysbiotic communities are characterized by increased numbers of bacteria that exploit the serum-like transudate for nutrients, giving rise to a proteolytic community phenotype. Here we investigate the contribution of interactions between members of a sub-gingival community to survival and development of virulence in a serum environment-modelling that in the subgingival pocket. METHODS: Growth and proteolytic activity of three Porphyromonas gingivalis strains in nutrient broth or a serum environment were assessed using A600 and a fluorescent protease substrate, respectively. Adherence of P. gingivalis strains to serum-coated surfaces was studied with confocal microscopy and 2D-gel electrophoresis of bacterial supernatants used to investigate extracellular proteins. A model multi-species sub-gingival community containing Fusobacterium nucleatum, Streptococcus constellatus, Parvimonas micra with wild type or isogenic mutants of P. gingivalis was then created and growth and proteolytic activity in serum assessed as above. Community composition over time was monitored using culture techniques and qPCR. RESULTS: The P. gingivalis strains showed different growth rates in nutrient broth related to the level of proteolytic activity (largely gingipains) in the cultures. Despite being able to adhere to serum-coated surfaces, none of the strains was able to grow alone in a serum environment. Together in the subgingival consortium however, all the included species were able to grow in the serum environment and the community adopted a proteolytic phenotype. Inclusion of P. gingivalis strains lacking gingipains in the consortium revealed that community growth was facilitated by Rgp gingipain from P. gingivalis. CONCLUSIONS: In the multi-species consortium, growth was facilitated by the wild-type and Rgp-expressing strains of P. gingivalis, suggesting that Rgp is involved in delivery of nutrients to the whole community through degradation of complex protein substrates in serum. Whereas they are constitutively expressed by P. gingivalis in nutrient broth, gingipain expression in the model periodontal pocket environment (serum) appeared to be orchestrated through signaling to P. gingivalis from other members of the community, a phenomenon which then promoted growth of the whole community.


Assuntos
Adesinas Bacterianas , Porphyromonas gingivalis , Cisteína Endopeptidases , Fusobacterium nucleatum , Cisteína Endopeptidases Gingipaínas
5.
Biomacromolecules ; 22(8): 3202-3215, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34254779

RESUMO

In this study, ginger residue from juice production was evaluated as a raw material resource for preparation of nanofiber hydrogels with multifunctional properties for advanced wound dressing applications. Alkali treatment was applied to adjust the chemical composition of ginger fibers followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation prior to nanofiber isolation. The effect of alkali treatment on hydrogel properties assembled through vacuum filtration without addition of any chemical cross-linker was evaluated. An outstanding absorption ability of 6200% combined with excellent mechanical properties, tensile strength of 2.1 ± 0.2 MPa, elastic modulus of 15.3 ± 0.3 MPa, and elongation at break of 25.1%, was achieved without alkali treatment. Furthermore, the absorption capacity was tunable by applying alkali treatment at different concentrations and by adjusting the hydrogel grammage. Cytocompatibility evaluation of the hydrogels showed no significant effect on human fibroblast proliferation in vitro. Ginger essential oil was used to functionalize the hydrogels by providing antimicrobial activity, furthering their potential as a multifunctional wound dressing.


Assuntos
Nanofibras , Zingiber officinale , Antibacterianos/farmacologia , Bandagens , Humanos , Hidrogéis
6.
Sci Rep ; 11(1): 12514, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131160

RESUMO

Multidrug resistance bacteria constitue an increasing global health problem and the development of novel therapeutic strategies to face this challenge is urgent. Antimicrobial peptides have been proven as potent agents against pathogenic bacteria shown by promising in vitro results. The aim of this study was to characterize the antimicrobial effects of PLNC8 αß on cell signaling pathways and inflammatory responses of human keratinocytes infected with S. aureus. PLNC8 αß did not affect the viability of human keratinocytes but upregulated several cytokines (IL-1ß, IL-6, CXCL8), MMPs (MMP1, MMP2, MMP9, MMP10) and growth factors (VEGF and PDGF-AA), which are essential in cell regeneration. S. aureus induced the expression of several inflammatory mediators at the gene and protein level and PLNC8 αß was able to significantly suppress these effects. Intracellular signaling events involved primarily c-Jun via JNK, c-Fos and NFκB, suggesting their essential role in the initiation of inflammatory responses in human keratinocytes. PLNC8 αß was shown to modulate early keratinocyte responses, without affecting their viability. The peptides have high selectivity towards S. aureus and were efficient at eliminating the bacteria and counteracting their inflammatory and cytotoxic effects, alone and in combination with low concentrations of gentamicin. We propose that PLNC8 αß may be developed to combat infections caused by Staphylococcus spp.


Assuntos
Antibacterianos/farmacologia , Queratinócitos/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interleucina-1beta/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/patogenicidade , Ativação Transcricional/efeitos dos fármacos
8.
Sci Rep ; 10(1): 3580, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107445

RESUMO

The use of conventional antibiotics has substantial clinical efficacy, however these vital antimicrobial agents are becoming less effective due to the dramatic increase in antibiotic-resistant bacteria. Novel approaches to combat bacterial infections are urgently needed and bacteriocins represent a promising alternative. In this study, the activities of the two-peptide bacteriocin PLNC8 αß were investigated against different Staphylococcus spp. The peptide sequences of PLNC8 α and ß were modified, either through truncation or replacement of all L-amino acids with D-amino acids. Both L- and D-PLNC8 αß caused rapid disruption of lipid membrane integrity and were effective against both susceptible and antibiotic resistant strains. The D-enantiomer was stable against proteolytic degradation by trypsin compared to the L-enantiomer. Of the truncated peptides, ß1-22, ß7-34 and ß1-20 retained an inhibitory activity. The peptides diffused rapidly (2 min) through the bacterial cell wall and permeabilized the cell membrane, causing swelling with a disorganized peptidoglycan layer. Interestingly, sub-MIC concentrations of PLNC8 αß substantially enhanced the effects of different antibiotics in an additive or synergistic manner. This study shows that PLNC8 αß is active against Staphylococcus spp. and may be developed as adjuvant in combination therapy to potentiate the effects of antibiotics and reduce their overall use.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Staphylococcus/efeitos dos fármacos , Antibacterianos/química , Bacteriocinas/química , Bacteriocinas/genética , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Staphylococcus/crescimento & desenvolvimento
9.
Future Microbiol ; 14: 195-205, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30648887

RESUMO

AIM: Bacteriocins are considered as promising alternatives to antibiotics against infections. In this study, the plantaricins (Pln) A, E, F, J and K were investigated for their antimicrobial activity against Staphylococcus epidermidis. MATERIALS & METHODS: The effects on membrane integrity were studied using liposomes and viable bacteria, respectively. RESULTS: We show that PlnEF and PlnJK caused rapid and significant lysis of S. epidermidis, and induced lysis of liposomes. The PlnEF and PlnJK displayed similar mechanisms by targeting and disrupting the bacterial cell membrane. Interestingly, Pln enhanced the effects of different antibiotics by 30- to 500-fold. CONCLUSION: This study shows that Pln in combination with low concentrations of antibiotics is efficient against S. epidermidis and may be developed as potential treatment of infections.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Sequência de Aminoácidos , Bacteriocinas/química , Membrana Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Combinação de Medicamentos , Sinergismo Farmacológico , Lipossomos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Precursores de Proteínas/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/citologia
10.
APMIS ; 126(8): 667-677, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30168624

RESUMO

Strong epidemiological evidence supports an association between cardiovascular and periodontal disease and furthermore, the periodontopathogen Porphyromonas gingivalis has been identified in blood and from atheromatous plaques. Blood exposed to P. gingivalis shows an increased protein modification of low-density lipoprotein (LDL). In this study, we investigate the inflammatory responses of THP1 cells incubated with P. gingivalis and the effects of native or modified LDL on these responses. Reactive oxygen species (ROS) and IL-1ß were observed in THP1 cells following infection with P. gingivalis ATCC33277 and W50. Caspase 1 activity was quantified in THP1 cells and correlated with IL-1ß accumulation. Oxidized LDL (oxLDL) induced IL-1ß release and CD36 expression on THP1 cells. Modified LDL co-stimulated with ATCC33277 exhibited regulatory effects on caspase 1 activity, IL-1ß release and CD36 expression in THP1 cells, whereas W50 induced more modest responses in THP1 cells. In summary, we show that P. gingivalis is capable of inducing pro-inflammatory responses in THP1 cells, and native and modified LDL could alter these responses in a dose- and strain-dependent manner. Strain-dependent differences in THP1 cell responses could be due to the effect of P. gingivalis proteases, presence or absence of capsule and proteolytic transformation of native and modified LDL.


Assuntos
Lipoproteínas LDL/farmacologia , Porphyromonas gingivalis/metabolismo , Antígenos CD36/genética , Antígenos CD36/imunologia , Caspase 1/genética , Caspase 1/imunologia , Técnicas de Cocultura , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Especificidade de Órgãos , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/patogenicidade , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/imunologia , Células THP-1
11.
Microbiologyopen ; 7(6): e00606, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29536668

RESUMO

Antimicrobial resistance needs to be tackled from new angles, and antimicrobial peptides could be future candidates for combating bacterial infections. This study aims to investigate in vitro the bactericidal effects of the lantibiotic gallidermin on Staphylococcus epidermidis and Staphylococcus aureus, possible cytotoxic effects and its impact on host-microbe interactions. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of gallidermin were determined, and cytotoxicity and proinflammatory effects of gallidermin on fibroblasts, red blood cells (RBCs) and in whole blood were investigated. Both MIC and MBC for all four tested strains of S. epidermidis was 6.25 µg/ml. Both MIC and MBC for methicillin-sensitive S. aureus was 12.5 µg/ml and for methicillin-resistant S. aureus (MRSA) 1.56 µg/ml. Gallidermin displayed no cytotoxic effects on fibroblasts, only a high dose of gallidermin induced low levels of CXCL8 and interleukin-6. Gallidermin hemolyzed less than 1% of human RBCs, and did not induce reactive oxygen species production or cell aggregation in whole blood. In cell culture, gallidermin inhibited the cytotoxic effects of the bacteria and totally suppressed the bacteria-induced release of CXCL8 and interleukin-6 from fibroblasts. We demonstrate that gallidermin, expressing low cell cytotoxicity, is a promising candidate for treating bacterial infections caused by S. epidermidis and S. aureus, especially MRSA.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Derme/microbiologia , Fibroblastos/imunologia , Peptídeos/farmacologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Adulto , Células Cultivadas , Derme/imunologia , Fibroblastos/microbiologia , Humanos , Interleucina-6/imunologia , Interleucina-8/imunologia , Masculino , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/fisiologia
12.
Biomed Mater ; 13(2): 025014, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29047451

RESUMO

Wound dressings based on bacterial cellulose (BC) can form a soft and conformable protective layer that can stimulate wound healing while preventing bacteria from entering the wound. Bacteria already present in the wound can, however, thrive in the moist environment created by the BC dressing which can aggravate the healing process. Possibilities to render the BC antimicrobial without affecting the beneficial structural and mechanical properties of the material would hence be highly attractive. Here we present methods for functionalization of BC with ε-poly-L-Lysine (ε-PLL), a non-toxic biopolymer with broad-spectrum antimicrobial activity. Low molecular weight ε-PLL was cross-linked in pristine BC membranes and to carboxymethyl cellulose functionalized BC using carbodiimide chemistry. The functionalization of BC with ε-PLL inhibited growth of S. epidermidis on the membranes but did not affect the cytocompatibility to cultured human fibroblasts as compared to native BC. The functionalization had no significant effects on the nanofibrous structure and mechanical properties of the BC. The possibility to functionalize BC with ε-PLL is a promising, green and versatile approach to improve the performance of BC in wound care and other biomedical applications.


Assuntos
Antibacterianos/química , Bandagens , Celulose/química , Fibroblastos/efeitos dos fármacos , Polilisina/química , Cicatrização/efeitos dos fármacos , Adsorção , Aminas/química , Biopolímeros/química , Fibroblastos/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanofibras/química , Reprodutibilidade dos Testes , Reologia , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus epidermidis/efeitos dos fármacos , Estresse Mecânico
13.
Pathog Dis ; 75(5)2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28605543

RESUMO

Periodontitis is a chronic inflammatory disease that is characterised by accumulation of pathogenic bacteria, including Porphyromonas gingivalis, in periodontal pockets. The lack of effective treatments has emphasised in an intense search for alternative methods to prevent bacterial colonisation and disease progression. Bacteriocins are bacterially produced antimicrobial peptides gaining increased consideration as alternatives to traditional antibiotics. We show rapid permeabilisation and aggregation of P. gingivalis by the two-peptide bacteriocin PLNC8 αß. In a cell culture model, P. gingivalis was cytotoxic against gingival fibroblasts. The proteome profile of fibroblasts is severely affected by P. gingivalis, including induction of the ubiquitin-proteasome pathway. PLNC8 αß enhanced the expression of growth factors and promoted cell proliferation, and suppressed proteins associated with apoptosis. PLNC8 αß efficiently counteracted P. gingivalis-mediated cytotoxicity, increased expression of a large number of proteins and restored the levels of inflammatory mediators. In conclusion, we show that bacteriocin PLNC8 αß displays dual effects by acting as a potent antimicrobial agent killing P. gingivalis and as a stimulatory factor promoting cell proliferation. We suggest preventive and therapeutical applications of PLNC8 αß in periodontitis to supplement the host immune defence against P. gingivalis infection and support wound healing processes.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Ontologia Genética , Gengiva/efeitos dos fármacos , Gengiva/metabolismo , Gengiva/microbiologia , Interações Hospedeiro-Patógeno/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Anotação de Sequência Molecular , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/genética , Proteoma/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
14.
APMIS ; 125(7): 623-633, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28493507

RESUMO

Porphyromonas gingivalis is a keystone pathogen in periodontitis and is gaining importance in cardiovascular pathogenesis. Protease-activated receptors (PARs), toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) on monocytes recognize the structural components on P. gingivalis, inducing inflammatory intermediates. Here, we elucidate the modulation of PARs, TLRs, NODs, and the role of MAPK and NF-κB in IL-1ß and CXCL8 release. THP1 cells were stimulated with P. gingivalis wild-type W50 and its isogenic gingipain mutants: Rgp mutant E8 and Kgp mutant K1A. We observed modulation of PARs, TLRs, NOD, IL-1ß and CXCL8 expression by P. gingivalis. Gingipains hydrolyse IL-1ß and CXCL8, which is more evident for IL-1ß accumulation at 24 h. Inhibition of PKC (protein kinase C), p38 and ERK (extracellular signal-regulated kinases) partially reduced P. gingivalis-induced IL-1ß at 6 h, whereas PKC and ERK reduced CXCL8 at both 6 and 24 h. Following NF-κB inhibition, P. gingivalis-induced IL-1ß and CXCL8 were completely suppressed to basal levels. Overall, TLRs, PARs and NOD possibly act in synergy with PKC, MAPK ERK/p38 and NF-κB in P. gingivalis-induced IL-1ß and CXCL8 release from THP1 cells. These pro-inflammatory cytokines could affect leucocytes in circulation and exacerbate other vascular inflammatory conditions such as atherosclerosis.


Assuntos
Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Monócitos/imunologia , NF-kappa B/metabolismo , Porphyromonas gingivalis/imunologia , Proteína Quinase C/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Monócitos/microbiologia
15.
APMIS ; 125(2): 157-169, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28120492

RESUMO

Porphyromonas gingivalis, which is considered a keystone agent in periodontitis, has evolved elaborate mechanisms to grow and survive in a hostile milieu. The gingival fibroblast is the major cell type in the gingiva and is considered to be important in the periodontitis-associated inflammation. As a part of the innate immune response, they produce cytokines such as CXCL8 and interleukin (IL)-6 which are believed to contribute to the destruction of the tooth-supporting tissues. This study investigates how the expression of protease-activated receptors (PAR1, PAR2) and toll-like receptors (TLR2, TLR4) changes with P. gingivalis exposure and how silencing of one receptor affects the expression of the other receptors. The importance of protein kinase C (PKC) and p38 in the regulation of CXCL8 and IL-6 was also examined. Receptors were knockdown with small-interfering RNA. PKC or p38 was blocked prior to stimulation with P. gingivalis. Fibroblasts were able to compensate for PAR1 knockdown with increased expression of PAR2. PKC and p38 were involved in the regulation of P. gingivalis-induced CXCL8 and IL-6. Our results indicate that PAR1 and PAR2 could be implicated in periodontitis and that PKC and P38 play a role in the inflammatory response in P. gingivalis-infected gingival fibroblasts.


Assuntos
Fibroblastos/imunologia , Fibroblastos/microbiologia , Porphyromonas gingivalis/imunologia , Receptores Ativados por Proteinase/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Western Blotting , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Proteína Quinase C/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
BMC Microbiol ; 16(1): 188, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538539

RESUMO

BACKGROUND: The complications in healthcare systems associated with antibiotic-resistant microorganisms have resulted in an intense search for new effective antimicrobials. Attractive substances from which novel antibiotics may be developed are the bacteriocins. These naturally occurring peptides are generally considered to be safe and efficient at eliminating pathogenic bacteria. Among specific keystone pathogens in periodontitis, Porphyromonas gingivalis is considered to be the most important pathogen in the development and progression of chronic inflammatory disease. The aim of the present study was to investigate the antimicrobial effects of different Lactobacillus species and the two-peptide bacteriocin PLNC8 αß on P. gingivalis. RESULTS: Growth inhibition of P. gingivalis was obtained by viable Lactobacillus and culture media from L. plantarum NC8 and 44048, but not L. brevis 30670. The two-peptide bacteriocin from L. plantarum NC8 (PLNC8 αß) was found to be efficient against P. gingivalis through binding followed by permeabilization of the membranes, using Surface plasmon resonance analysis and DNA staining with Sytox Green. Liposomal systems were acquired to verify membrane permeabilization by PLNC8 αß. The antimicrobial activity of PLNC8 αß was found to be rapid (1 min) and visualized by TEM to cause cellular distortion through detachment of the outer membrane and bacterial lysis. CONCLUSION: Soluble or immobilized PLNC8 αß bacteriocins may be used to prevent P. gingivalis colonization and subsequent pathogenicity, and thus supplement the host immune system against invading pathogens associated with periodontitis.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Lactobacillus/fisiologia , Periodontite/prevenção & controle , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia , Bacteriocinas/química , Parede Celular/efeitos dos fármacos , Dicroísmo Circular/métodos , Técnicas de Cocultura , Difusão Dinâmica da Luz/métodos , Concentração de Íons de Hidrogênio , Lipossomos/farmacologia , Testes de Sensibilidade Microbiana , Periodontite/microbiologia , Estrutura Secundária de Proteína
17.
Nanoscale ; 8(29): 14146-55, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27385421

RESUMO

Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm(-2) and a charge injection capacity of 0.3 mC cm(-2), which is on par with bioelectrodes used in the clinic. The mechanical properties of the materials are similar to soft tissues with a dynamic elastic modulus within the lower kPa range. The nanocomposites also support proliferation of embryonic cardiomyocytes while inhibiting the growth of both Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis. The developed collagen/AgNW composites thus represent a highly attractive bioelectrode and scaffold material for a wide range of biomedical applications.

18.
Sci Rep ; 6: 21911, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26907358

RESUMO

Porphyromonas gingivalis (P. gingivalis) is considered to be involved in the development of atherosclerosis. However, the role of different virulence factors produced by P. gingivalis in this process is still uncertain. The aim of this study was to investigate the transcriptional profiling of human aortic smooth muscle cells (AoSMCs) infected with wild type, gingipain mutants or fimbriae mutants of P. gingivalis. AoSMCs were exposed to wild type (W50 and 381), gingipain mutants (E8 and K1A), or fimbriae mutants (DPG-3 and KRX-178) of P. gingivalis. We observed that wild type P. gingivalis changes the expression of a considerable larger number of genes in AoSMCs compare to gingipain and fimbriae mutants, respectively. The results from pathway analysis revealed that the common differentially expressed genes for AoSMCs infected by 3 different wild type P. gingivalis strains were enriched in pathways of cancer, cytokine-cytokine receptor interaction, regulation of the actin cytoskeleton, focal adhesion, and MAPK signaling pathway. Disease ontology analysis showed that various strains of P. gingivalis were associated with different disease profilings. Our results suggest that gingipains and fimbriae, especially arginine-specific gingipain, produced by P. gingivalis play important roles in the association between periodontitis and other inflammatory diseases, including atherosclerosis.


Assuntos
Adesinas Bacterianas/genética , Cisteína Endopeptidases/genética , Fímbrias Bacterianas/genética , Porphyromonas gingivalis/patogenicidade , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Aorta/citologia , Aterosclerose/genética , Aterosclerose/patologia , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Adesões Focais/genética , Adesões Focais/metabolismo , Perfilação da Expressão Gênica , Cisteína Endopeptidases Gingipaínas , Humanos , Sistema de Sinalização das MAP Quinases/genética , Mutação , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Transcriptoma
19.
Infect Immun ; 83(11): 4256-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283334

RESUMO

Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease.


Assuntos
Adesinas Bacterianas/metabolismo , Angiopoietina-1/genética , Angiopoietina-2/genética , Aorta/citologia , Infecções por Bacteroidaceae/genética , Cisteína Endopeptidases/metabolismo , Miócitos de Músculo Liso/metabolismo , Periodontite/microbiologia , Porphyromonas gingivalis/enzimologia , Adesinas Bacterianas/genética , Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Aorta/metabolismo , Aorta/microbiologia , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/microbiologia , Células Cultivadas , Cisteína Endopeptidases/genética , Cisteína Endopeptidases Gingipaínas , Humanos , Miócitos de Músculo Liso/microbiologia , Periodontite/genética , Periodontite/metabolismo , Porphyromonas gingivalis/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
20.
Cytokine ; 76(2): 424-432, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318255

RESUMO

Porphyromonas gingivalis is a periodontitis-associated pathogen and interactions between the bacterium and gingival fibroblasts play an important role in development and progression of periodontitis, an inflammatory disease leading to degeneration of tooth-supporting structures. Gingival fibroblasts, which expresses protease activated receptors (PARs) as well as toll-like receptors (TLRs), produces inflammatory mediators upon bacterial challenges. In this study, we elucidated the importance of PAR1, PAR2, TLR2 and TLR4 for the expression and secretion of CXCL8, interleukin-6 (IL-6), transforming growth factor-ß1 (TGF-ß1) and secretory leukocyte inhibitor (SLPI). Human gingival fibroblasts were transfected with small-interfering RNA against the target genes, and then stimulated with P. gingivalis wild-type W50 and W50-derived double rgp mutant E8 and kgp mutant K1A. TLR2-silencing reduced P. gingivalis-induced CXCL8 and IL-6. IL-6 was also reduced after PAR1-silencing. No effects were observed for TGF-ß1. SLPI was suppressed by P. gingivalis and silencing of PAR1 as well as TLR2, gave additional suppression at the mRNA level. TLR4 was not involved in the regulation of the investigated mediators. CXCL8 and IL-6 are important for progression and development of periodontitis, leading to a chronic inflammation that may contribute to the tissue destruction that follows an exacerbated host response. Therefore, regulating the expression of TLR2 and subsequent release of CXCL8 and IL-6 in periodontitis could attenuate the tissue destruction seen in periodontitis.


Assuntos
Citocinas/metabolismo , Gengiva/metabolismo , Porphyromonas gingivalis/fisiologia , Receptores Ativados por Proteinase/fisiologia , Receptores Toll-Like/fisiologia , Células Cultivadas , Fibroblastos/metabolismo , Gengiva/citologia , Gengiva/microbiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...