Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(4): 3229-3239, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193862

RESUMO

Perovskites composed of inorganic cesium (Cs) halide provide a route to thermally resistant solar cells. Nevertheless, the use of hole-transporting layers (HTLs) with hydrophobic additives is constrained by moisture-induced phase deterioration. Due to significant electrical loss, dopant-free HTLs are unable to produce practical solar cells. In this article, we designed a two-dimensional 1,3,6,8-tetrakis[5-(N,N-di(p-(methylthio)phenyl)amino-p-phenyl)-thiophen-2-yl]pyrene (termed SMe-TATPyr) molecule as a new HTL to regulate electrical loss in lead-free perovskite solar cells (PSCs). We optimized the power conversion efficiency (PCE) of PSCs based on mixed tin (Sn)/germanium (Ge) halide perovskite (CsSn0.5Ge0.5I3) by exploring different factors, such as the deep and shallow levels of defects, density of states at the valence band (NV), thickness of the perovskite film, p-type doping concentration (NA) of HTL, the series and shunt resistances, and so on. We carried out comparative research by employing the 1D-SCAPS (a solar cell capacitance simulator) analysis tool. Through optimization of the PSC, we obtained the highest parameters in the simulated solar cell structure of fluorine tin oxide (FTO)/titanium dioxide (TiO2)/CsSn0.5Ge0.5I3/SMe-TATPyr/gold (Au), and the PCE reached up to 20% with a fill factor (FF) of 81.89%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA