Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Rep ; 12: 292-298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38495471

RESUMO

Teratogenic and embryotoxic effect of diclofenac sodium (DS) on different developmental stages of the chick-embryos was investigated by examining different parameters such as its mortality rate, hatching, morphological measurements, weighing its internal organs and calculation of different indices. Experiment was divided into four trials with different dose (0.1 mL, 0.2 mL, 0.3 mL in groups A, B, and C, respectively and group D received 0.3 mL saline solution (0.9% NaCl) and group E remained un-injected) administration and observation. Results of first and second trial showed statistically (p<0.01) significant difference in bodyweight, body-length, forelimb and hindlimb length between experimental and control groups. In third trial, diclofenac sodium administration showed a statistically (p<0.01) significant difference in the bodyweight, body-length, forelimb, hindlimb length, liver weight, egg weight (EE ratio) and kidney somatic index (KSI). The beak-size, heart weight, kidney weight, cardiac somatic index (CSI) and hepato somatic index (HSI) were not significant (p>0.05) when compared with the control groups. In trial 4, forelimb, hindlimb length, heart weight, CSI and HSI were statistically (p<0.01) significant. Body-length and liver weight were significant (p<0.05). While bodyweight, beak size, kidney weight and KSI were non-significant (p>0.05). The mortality rate was increased with increase dose of DS and also affected the hatching. DS effect on chick embryos can be applied to humans because the early development of mammals and birds are closely related. So, it was concluded that DS should be used with caution during pregnancy especially during first trimester of pregnancy.

2.
Heliyon ; 10(6): e27018, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38501012

RESUMO

Despite the success of antibiotics in medicine, the treatment of bacterial infection is still challenging due to emerging resistance and suitable drug delivery system, therefore, innovative approaches focused on nanoparticles based antimicrobial drug delivery systems are highly desired. This research aimed to synthesize Cymbopogon citratus (C. citratus) aqueous extract-mediated copper oxide (CuO-Nps) conjugated with levofloxacin (LFX). The synthesized CuO NPs-LFX nano conjugate was confirmed by analysis using scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and infrared and ultraviolet/visible spectroscopy. Antibacterial activities were assessed in vitro through the agar well diffusion method against six bacterial strains of clinical relevance. CuO NPs confirmed by UV-Vis analysis absorption peak observed at 380 nm. TGA analysis showed 8.98% weight loss between the 400-800 °C temperature range. The functional group's presence was confirmed by FTIR analysis. Spherical shape nanoparticles with an average particle size of 55 nm were recorded by FESEM. Results from agar well diffusion assay showed that CuO NPs-LFX prohibited the development of both gram-positive and gram-negative bacteria at all established concentrations, and the antibacterial propensity was more pronounced as compared to bare CuO NPs, Levofloxacin and C. citratus aqueous extract alone. The results showed that gram-negative bacteria are more susceptible to CuO NPs-LFX nano conjugate and at 10 µgmL-1 concentration, form a 10.1 mm zone of inhibition (ZOI), whereas gram-positive bacteria on the same concentration form 9.5 mm ZOI. LFX-loaded CuO NPs antibacterial activity was observed higher than plant extract, bare CuO NPs, and standard drug (Levofloxacin). This study provides a novel approach for the fabrication of biogenic CuO NPs with antibacterial drug levofloxacin and their usage as nano antibiotic carriers against pathogenic bacteria, especially antibiotic-resistant microbes.

3.
Heliyon ; 10(3): e25579, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356523

RESUMO

Pure and manganese-doped titanium dioxide nanoparticles (MnTiO2-NPs) were synthesized by the defect-oriented hydrothermal approach. The synthesized material was then characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy (UV-Vis). The agar well diffusion method assessed the antibacterial efficiency of TiO2 and MnTiO2-NPs against E. coli and S. aureus. Zone of inhibition (ZOI) formed by pure TiO2 was observed as 12 mm and 11.5 mm against E. coli and S. aureus, while for MnTiO2-NPs it was observed as 19 mm (E. coli) and 21 mm (S. aureus). The concentration of synthesized nanoparticles (10 mg/ml, and 20 mg/ml) was used for antibacterial studies. The efficacy of the pure and MnTiO2-NPs as an active photocatalyst for the degradation of methylene blue (MB) dye was also assessed using a UV light. It was observed that the photodegradation efficiency of 1 g of MnTiO2-NPs was higher than the same amount of pure TiO2. The results suggest that the photocatalyst concentration directly impacts the photodegradation of MB dye. The pH value was found to influence the photodegradation of MB dye at higher pH values. Based on the obtained results, MnTiO2-NPs were observed as a promising agent for microbial resistance and water remediation.

4.
PLoS One ; 18(11): e0287322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992124

RESUMO

In this study, zinc-oxide (ZnO) nanoparticles (NPs) doped with cobalt (Co) were synthesized using a simple coprecipitation technique. The concentration of Co was varied to investigate its effect on the structural, morphological, optical, and dielectric properties of the NPs. X-ray diffraction (XRD) analysis confirmed the hexagonal wurtzite structure of both undoped and Co-doped ZnO-NPs. Scanning electron microscopy (SEM) was used to examine the morphology of the synthesized NPs, while energy-dispersive X-ray spectroscopy (EDX) was used to verify their purity. The band gap of the NPs was evaluated using UV-visible spectroscopy, which revealed a decrease in the energy gap as the concentration of Co2+ increased in the ZnO matrix. The dielectric constants and AC conductivity of the NPs were measured using an LCR meter. The dielectric constant of the Co-doped ZnO-NPs continuously increased from 4.0 × 10-9 to 2.25 × 10-8, while the dielectric loss decreased from 4.0 × 10-8 to 1.7 × 10-7 as the Co content increased from 0.01 to 0.07%. The a.c. conductivity also increased with increasing applied frequency. The findings suggest that the synthesized Co-doped ZnO-NPs possess enhanced dielectric properties and reduced energy gap, making them promising candidates for low-frequency devices such as UV photodetectors, optoelectronics, and spintronics applications. The use of a cost-effective and scalable synthesis method, coupled with detailed material characterization, makes this work significant in the field of nanomaterials and device engineering.


Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Nanopartículas/química , Óxidos , Cobalto/química , Difração de Raios X
5.
Heliyon ; 9(9): e19622, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810164

RESUMO

Water pollution caused by the release of organic pollutants is a major environmental concern worldwide. These pollutants can have harmful effects on aquatic ecosystems and the organisms living within them, as well as on human health when contaminated water is consumed. It is essential to implement proper treatment and management strategies to prevent and mitigate water pollution. Moreover, the major untreated industrial effluents are synthetic organic compounds especially 2,4,6-trichlorophenol (TCP) which cause several environmental issues and heath related problems in humans. To cope with this problem, an excellent 2D porous material based on p-DMAC4/GO composite has been synthesized as adsorbent material for the effective removal of 2,4,6-trichlorophenol pollutant from wastewater. In this regard, the advanced analytical tools such as Fourier-Transform infrared (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray spectroscopy (EDS) were used for its characterization. The results justified the chemical composition, excellent crystalline nature, surface morphology and elemental composition of the synthesized composite material. The synthesized adsorbent material showed 95% adsorption of TCP from wastewater system at optimal conditions i.e., pH (6), adsorbent dosage (30 mg) and shaking time (60 min). The mathematical models such as isotherms, thermodynamics and kinetics studies validate the nature of adsorption process of TCP pollutant. The adsorption data found to be best fitted with Langmuir isotherms (R2 = 0.99); whereas kinetic study suggested the pseudo-second-order nature of reaction with R2 = 0.99. The thermodynamics study confirmed the spontaneous and endothermic nature of the TCP pollutant onto the surface of p-DMAC4/GO material. Moreover, the results of current work were also compared with existing reported adsorbents and data suggested the higher efficiency, feasibility, and reusability of p-DMAC4/GO material to remove the TCP pollutant from the wastewater system.

6.
RSC Adv ; 13(42): 29270-29282, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37818256

RESUMO

The study proposes a simple and efficient way to synthesize a heterogeneous catalyst that can be used for the degradation of organic dyes. A simple and fast chemical process was employed to synthesize Au: Ni: Co tri-metal nanohybrid structures, which were used as a catalyst to eliminate toxic organic dye contamination from wastewater in textile industries. The catalyst's performance was tested by degrading individual dyes as well as mixtures of dyes such as methylene blue (MB), methyl orange (MO), methyl red (MR), and Rose Bengal (RB) at various time intervals. The experimental results show the catalytic high degradation efficiency of different dyes achieving 72-90% rates in 29 s. Moreover, the material displayed excellent recycling stability, maintaining its degradation efficiency over four consecutive runs without any degradation in performance. Overall, the findings of the study suggest that these materials possess efficient catalytic properties, opening avenues toward their use in clean energy alternatives, environmental remediation, and other biological applications.

7.
Microorganisms ; 11(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37764007

RESUMO

Overuse of pesticides in agricultural soil and dye-polluted effluents severely contaminates the environment and is toxic to animals and humans making their removal from the environment essential. The present study aimed to assess the biodegradation of pesticides (cypermethrin (CYP) and imidacloprid (IMI)), and dyes (malachite green (MG) and Congo red (CR)) using biofilms of bacteria isolated from pesticide-contaminated soil and dye effluents. Biofilms of indigenous bacteria, i.e., Bacillus thuringiensis 2A (OP554568), Enterobacter hormaechei 4A (OP723332), Bacillus sp. 5A (OP586601), and Bacillus cereus 6B (OP586602) individually and in mixed culture were tested against CYP and IMI. Biofilms of indigenous bacteria i.e., Lysinibacillus sphaericus AF1 (OP589134), Bacillus sp. CF3 (OP589135) and Bacillus sp. DF4 (OP589136) individually and in mixed culture were tested for their ability to degrade dyes. The biofilm of a mixed culture of B. thuringiensis + Bacillus sp. (P7) showed 46.2% degradation of CYP compared to the biofilm of a mixed culture of B. thuringiensis + E. hormaechei + Bacillus sp. + B. cereus (P11), which showed significantly high degradation (70.0%) of IMI. Regarding dye biodegradation, a mixed culture biofilm of Bacillus sp. + Bacillus sp. (D6) showed 86.76% degradation of MG, which was significantly high compared to a mixed culture biofilm of L. sphaericus + Bacillus sp. (D4) that degraded only 30.78% of CR. UV-VIS spectroscopy revealed major peaks at 224 nm, 263 nm, 581 nm and 436 nm for CYP, IMI, MG and CR, respectively, which completely disappeared after treatment with bacterial biofilms. Fourier transform infrared (FTIR) analysis showed the appearance of new peaks in degraded metabolites and disappearance of a peak in the control spectrum after biofilm treatment. Thin layer chromatography (TLC) analysis also confirmed the degradation of CYP, IMI, MG and CR into several metabolites compared to the control. The present study demonstrates the biodegradation potential of biofilm-forming bacteria isolated from pesticide-polluted soil and dye effluents against pesticides and dyes. This is the first report demonstrating biofilm-mediated bio-degradation of CYP, IMI, MG and CR utilizing soil and effluent bacterial flora from Multan and Sheikhupura, Punjab, Pakistan.

8.
Microorganisms ; 11(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37374866

RESUMO

Nanotechnology is a rapidly developing field of research that studies materials having dimensions of less than 100 nanometers. It is applicable in many areas of life sciences and medicine including skin care and personal hygiene, as these materials are the essential components of various cosmetics and sunscreens. The aim of the present study was to synthesize Zinc oxide (ZnO) and Titanium dioxide (TiO2) nanoparticles (NPs) by using Calotropis procera (C. procera) leaf extract. Green synthesized NPs were characterized by UV spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) to investigate their structure, size, and physical properties. The antibacterial and synergistic effects of ZnO and TiO2 NPs along with antibiotics were also observed against bacterial isolates. The antioxidant activity of synthesized NPs was analyzed by their α-diphenyl-ß-picrylhydrazyl (DPPH) radical scavenging activity. In vivo toxic effects of the synthesized NPs were evaluated in albino mice at different doses (100, 200, and 300 mg/kg body weight) of ZnO and TiO2 NPs administered orally for 7, 14, and 21 days. The antibacterial results showed that the zone of inhibition (ZOI) was increased in a concentration-dependent manner. Among the bacterial strains, Staphylococcus aureus showed the highest ZOI, i.e., 17 and 14 mm against ZnO and TiO2 NPs, respectively, while Escherichia coli showed the lowest ZOI, i.e., 12 and 10 mm, respectively. Therefore, ZnO NPs are potent antibacterial agents compared to TiO2 NPs. Both NPs showed synergistic effects with antibiotics (ciprofloxacin and imipenem). Moreover, the DPPH activity showed that ZnO and TiO2 NPs have significantly (p > 0.05) higher antioxidant activity, i.e., 53% and 58.7%, respectively, which indicated that TiO2 has good antioxidant potential compared to ZnO NPs. However, the histological changes after exposure to different doses of ZnO and TiO2 NPs showed toxicity-related changes in the structure of the kidney compared to the control group. The current study provided valuable information about the antibacterial, antioxidant, and toxicity impacts of green synthesized ZnO and TiO2 NPs, which can be influential in the further study of their eco-toxicological effects.

9.
J Basic Microbiol ; 63(8): 855-867, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37078839

RESUMO

Water salinity causes less production of agricultural productivity, low economic returns, soil destructions, less sustainability, and reduction in the germination rate. The current study was aimed to understand the combined potential of halophilic bacteria and rice husk in treating water salinity. In total, 10 halophilic bacterial isolates were isolated from Khewra Mines, Pakistan. Bacterial isolates were characterized by biochemical tests. 16S rRNA gene sequencing identified the isolate SO 1 as Bacillus safensis (accession number ON203008) being the promising halophilic bacteria tolerating upto 3 M NaCl concentration. Next, rice husk was used as carbon source for bacterial biofilm formation, growth and propagation. For saline water treatment, the experimental setting comprising glass wool, rice husk and artificial sea water (3 M) was set. B. safensis biofilm was developed in test samples to desaline the saline water containing 3 M NaCl concentration. Following NaCl decline, flame photometric analysis was used to check the desalination extent of treated saline water. Results showed decreased sodium level in sea water in the presence of rice husk and glass wool. The eluted water used for the germination of Zea mays seeds showed improved growth performance. Also, decreased photosynthetic pigments (chlorophyll "a" = 18.99, and chlorophyll "b" = 10.65), sugar contents (0.7593), and increased carotenoid (1526.91), protein contents (0.4521) were noted compared to control. This eco-friendly approach for bioremediation of salt-affected soils to optimize crop yields under stress through halophilic bacteria and rice husk may overcome the problem of the reduced yield of cash crops/agriculture and water shortage by salinity.


Assuntos
Oryza , Cloreto de Sódio/metabolismo , RNA Ribossômico 16S/genética , Archaea/genética , Clorofila/metabolismo , Solo/química , Águas Salinas , Biofilmes , Salinidade
10.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904462

RESUMO

In this study Fe-Cu supported on Alginate-limestone (Fe-Cu/Alg-LS) was prepared. The increase in surface area was the main motivation for the synthesis of ternary composites. Scanning electronic microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were used to examine the surface morphology, particle size, percentage of crystallinity, and elemental content of the resultant composite. Fe-Cu/Alg-LS was used as an adsorbent for the removal of drugs such as ciprofloxacin (CIP) and levofloxacin (LEV)from contaminated medium. The adsorption parameters were computed using kinetic and isotherm models. The maximum removal efficiency of CIP (20 ppm) and LEV (10 ppm) was found to be 97.3% and 100%, respectively. The optimal conditions were pH 6 and 7 for CIP and LEV, optimum contact time 45, 40 min for CIP and LEV, and temperature of 303 K. The pseudo-second-order model, which confirmed the chemisorption properties of the process, was the most appropriate kinetic model among the ones used, and the Langmuir model, which was the most appropriate isotherm model. Moreover, the parameters of thermodynamics were also assessed. The results imply that the synthesized nanocomposites can be used to remove hazard materials from aqueous solutions.

11.
Microorganisms ; 11(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36838307

RESUMO

Antibiotic drug resistance is a global public health issue that demands new and novel therapeutic molecules. To develop new agents, animal secretions or products are used as an alternative agent to overcome this problem. In this study, earthworm (Pheretima posthuma) coelomic fluid (PCF), and body paste (PBP) were used to analyze their effects as antibiofilm agents against four bacterial isolates MH1 (Pseudomonas aeruginosa MT448672), MH2 (Escherichia coli MT448673), MH3 (Staphylococcus aureus MT448675), and MH4 (Klebsiella pneumoniae MT448676). Coelomic fluid extraction and body paste formation were followed by minimum inhibitory concentrations (MICs), biofilm formation time kinetics, and an antibiofilm assay, using heat and cold shock, sunlight exposure auto-digestion, and test tube methods. The results showed that the MIC values of PCF and PBP against S. aureus, P. aeruginosa, K. pneumoniae, and E. coli bacterial isolates ranged from 50 to 100 µg/mL, while, the results related to biofilm formation for P. aeruginosa, S. aureus, and K. pneumoniae strains were observed to be highly significantly increased (p < 0.005) after 72 h. E. coli produced a significant (p < 0.004) amount of biofilm after 48 h. Following time kinetics, the antibiofilm activity of PCF and PBP was tested at different concentrations (i.e., 25-200 µg/mL) against the aforementioned four strains (MH1-MH4). The findings of this study revealed that both PBP (5.61 ± 1.0%) and PCF (5.23 ± 1.5%) at the lowest concentration (25 µg/mL) showed non-significant (p > 0.05) antibiofilm activity against all the selected strains (MH1-MH4). At 50 µg/mL concentration, both PCF and PBP showed significant (p < 0.05) biofilm inhibition (<40%) for all isolates. Further, the biofilm inhibitory potential was also found to be more significant (p < 0.01) at 100 µg/mL of PCF and PBP, while it showed highly significant (p < 0.001) biofilm inhibition at 150 and 200 µg/mL concentrations. Moreover, more than 90% biofilm inhibition was observed at 200 µg/mL of PCF, while in the case of the PBP, <96% biofilm reduction (i.e., 100%) was also observed by all selected strains at 200 µg/mL. In conclusion, earthworm body fluid and paste have biologically active components that inhibit biofilm formation by various pathogenic bacterial strains. For future investigations, there is a need for further study to explore the potential bioactive components and investigate in depth their molecular mechanisms from a pharmaceutical perspective for effective clinical utilization.

12.
Front Chem ; 10: 930620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903193

RESUMO

The use of Phyllanthus emblica (gooseberry) leaf extract to synthesize Boron-doped zinc oxide nanosheets (B-doped ZnO-NSs) is deliberated in this article. Scanning electron microscopy (SEM) shows a network of synthesized nanosheets randomly aligned side by side in a B-doped ZnO (15 wt% B) sample. The thickness of B-doped ZnO-NSs is in the range of 20-80 nm. B-doped ZnO-NSs were tested against both gram-positive and gram-negative bacterial strains including Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli. Against gram-negative bacterium (K. pneumonia and E. coli), B-doped ZnO displays enhanced antibacterial activity with 26 and 24 mm of inhibition zone, respectively. The mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), mean free path (MFP), half-value layer (HVL), and tenth value layer (TVL) of B-doped ZnO were investigated as aspects linked to radiation shielding. These observations were carried out by using a PTW® electron detector and VARIAN® irradiation with 6 MeV electrons. The results of these experiments can be used to learn more about the radiation shielding properties of B-doped ZnO nanostructures.

13.
Bioinorg Chem Appl ; 2022: 9459886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873731

RESUMO

Environmental problems with chemical and biological water pollution have become a major concern for society. Providing people with safe and affordable water is a grand challenge of the 21st century. The study investigates the photocatalytic degradation capabilities of hydrothermally prepared pure and Cu-doped ZnO nanoparticles (NPs) for the elimination of dye pollutants. A simple, cost-effective hydrothermal process is employed to synthesize the Cu-doped ZnO NPs. The photocatalytic dye degradation activity of the synthesized Cu-doped ZnO NPs is tested by using methylene blue (MB) dye. In addition, the parameters that affect photodegradation efficiency, such as catalyst concentration, starting potential of hydrogen (pH), and dye concentration, were also assessed. The dye degradation is found to be directly proportional to the irradiation time, as 94% of the MB dye is degraded in 2 hrs. Similarly, the dye degradation shows an inverse relation to the MB dye concentration, as the degradation reduced from 94% to 20% when the MB concentration increases from 5 ppm to 80 ppm. The synthesized cost-effective and environmentally friendly Cu-doped ZnO NPs exhibit improved photocatalytic activity against MB dye and can therefore be employed in wastewater treatment materials.

14.
RSC Adv ; 12(11): 6592-6600, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35424596

RESUMO

Boron nitride (BN) nanomaterials are rapidly being investigated for potential applications in biomedical sciences due to their exceptional physico-chemical characteristics. However, their safe use demands a thorough understanding of their possible environmental and toxicological effects. The cytotoxicity of boron nitride nanotubes (BNNTs) was explored to see if they could be used in living cell imaging. It was observed that the cytotoxicity of BNNTs is higher in cancer cells (65 and 80%) than in normal cell lines (40 and 60%) for 24 h and 48 h respectively. The influence of multiple experimental parameters such as pH, time, amount of catalyst, and initial dye concentration on percentage degradation efficiency was also examined for both catalyst and dye. The degradation effectiveness decreases (92 to 25%) as the original concentration of dye increases (5-50 ppm) due to a decrease in the availability of adsorption sites. Similarly, the degradation efficiency improves up to 90% as the concentration of catalyst increases (0.01-0.05 g) due to an increase in the adsorption sites. The influence of pH was also investigated, the highest degradation efficiency for MO dye was observed at pH 4. Our results show that lower concentrations of BNNTs can be employed in biomedical applications. Dye degradation properties of BNNTs suggest that it can be a potential candidate as a wastewater and air treatment material.

15.
Materials (Basel) ; 14(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207950

RESUMO

Cobalt (Co) doped zinc oxide (ZnO) microcrystals (MCs) are prepared by using the hydrothermal method from the precursor's mixture of zinc chloride (ZnCl2), cobalt-II chloride hexahydrate (CoCl2·6H2O), and potassium hydroxide (KOH). The smooth round cylindrical morphologies of the synthesized microcrystals of Co-doped ZnO show an increase in absorption with the cobalt doping. The antibacterial activity of the as-obtained Co-doped ZnO-MCs was tested against the bacterial strains of gram-negative (Escherichia coli, Klebsiella pneumonia) and gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes) via the agar well diffusion method. The zones of inhibition (ZOI) for Co-doped ZnO-MCs against E. coli and K. pneumoniae were found to be 17 and 19 mm, and 15 and 16 mm against S. Aureus and S. pyogenes, respectively. The prepared Co-doped ZnO-MCs were thus established as a probable antibacterial agent against gram-negative bacterial strains.

16.
PLoS One ; 16(5): e0251082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989295

RESUMO

A viable hydrothermal technique has been explored for the synthesis of copper doped Zinc oxide nanoparticles (Cu-doped ZnO-NPs) based on the precursor's mixture of Copper-II chloride dihydrate (CuCl2.2H2O), Zinc chloride (ZnCl2), and potassium hydroxide (KOH). X-ray diffraction (XRD) reported the hexagonal wurtzite structure of the synthesized Cu-doped ZnO-NPs. The surface morphology is checked via field emission scanning electron microscopy (FE-SEM), whereas, the elemental compositions of the samples were confirmed by Raman, and X-ray photoelectron spectroscopy (XPS), respectively. The as-obtained ZnO-NPs and Cu-doped ZnO-NPs were then tested for their antibacterial activity against clinical isolates of Gram-positive (Staphylococcus aureus, Streptococcus pyogenes) and Gram-negative (Escherichia coli, Klebsiella pneumonia) bacteria via agar well diffusion method. The zone of inhibition (ZOI) for Cu-doped ZnO-NPs was found to be 24 and 19 mm against S. Aureus and S. pyogenes, and 18 and 11 mm against E. coli and K. pneumoniae, respectively. The synthesized Cu-doped ZnO-NPs can thus be found as a potential nano antibiotic against Gram-positive multi-drug resistant bacterial strains.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos , Óxido de Zinco/farmacologia , Cobre/química , Cobre/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Humanos , Klebsiella pneumoniae/isolamento & purificação , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Staphylococcus aureus/isolamento & purificação , Streptococcus pyogenes/isolamento & purificação
17.
Nanomaterials (Basel) ; 11(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578945

RESUMO

Copper oxide and Zinc (Zn)-doped Copper oxide nanostructures (CuO-NSs) are successfully synthesized by using a hydrothermal technique. The as-obtained pure and Zn-doped CuO-NSs were tested to study the effect of doping in CuO on structural, optical, and antibacterial properties. The band gap of the nanostructures is calculated by using the Tauc plot. Our results have shown that the band gap of CuO reduces with the addition of Zinc. Optimization of processing conditions and concentration of precursors leads to the formation of pine needles and sea urchin-like nanostructures. The antibacterial properties of obtained Zn-doped CuO-NSs are observed against Gram-negative (Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria via the agar well diffusion method. Zn doped s are found to have more effective bacterial resistance than pure CuO. The improved antibacterial activity is attributed to the reactive oxygen species (ROS) generation.

18.
Cureus ; 12(9): e10661, 2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-33133831

RESUMO

INTRODUCTION:  Stigma is a label that differentiates a person from others and associates them with unenviable attributes. There are various forms of stigma: enacted stigma, perceived stigma, and self-stigma manifesting as stereotyping and harboring negative thoughts about the stigmatized group. Stigmatization of the drug abuser leads to effects such as low self-esteem, depression, and personality changes in the stigmatized.  Objectives: The purpose of the study is to know the impact of stigma on patients receiving substance abuse treatment in the Psychiatry Department, Mayo Hospital Lahore, Pakistan. DESIGN: Cross-sectional study.  Place: Psychiatry Department, Mayo Hospital, Lahore, Pakistan Study Period: Six months (February 22, 2020, to July 18, 2020). SUBJECTS AND METHODS: A population-based cross-sectional study was conducted in a tertiary care hospital. A total of 100 patients were recruited in the study. The selection was made on laid down criterion after taking due consent. Interviews were conducted through a pretested questionnaire. Data were collected, compiled, and analyzed through SPSS version 20 (IBM Corp., Armonk, USA), and relevant frequency tables were drawn.  Results: On analyzing the data, various forms of stigma were observed: enacted stigma (81% as considered less capable), perceived stigma (99% as having difficulties in the job seeking and relationships), and self-stigma (94% in having devaluation thoughts). Self-esteem was maintained (73% were content). Social support was present (76% from family). Moderate depression was seen in 17% of participants. Over 83% of our study population is aged 21 to 40 years, 15% between ages 41 and 60 years, and only 2% ranging between ages 1 and 20. A total of 80% of the population belonged to a low socioeconomic status, and 55% of participants abused opium, heroin, or brown sugar, followed by white crystal use in 37% of the study population. The majority reported the drug abuse duration of 1-5 years (70%). CONCLUSION:  Stigma in its various forms affects the drug abuser undergoing treatment. It results in low self-esteem and mild depression. Individuals from the broader socioeconomic range can be added in future studies, and a larger population can be studied by collecting data from other tertiary care hospitals and mental healthcare facilities. They can be assessed for factors contributing to their addiction and the challenges they had to go through to get the help they needed.

19.
Cureus ; 12(8): e10136, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33005548

RESUMO

Introduction Avascular necrosis occurs due to impaired blood supply to the bone. It can be caused by fractures, dislocations, chronic steroid use, chronic alcohol use, coagulopathy, congenital source, and many other factors. It mostly affects the femoral head (hip joint). Its management can be conservative or invasive. Total hip arthroplasty is the treatment of choice for third and fourth stage avascular necrosis that can be cemented or uncemented. The purpose of this study is to access the functional outcomes of cementless total hip arthroplasty in patients with avascular necrosis of the hip. Materials and methods This prospective study was conducted at a major metropolitan hospital in Karachi, Pakistan over a period of six months. A total of 30 patients of age <60 years, either gender, and a confirmed diagnosis of avascular necrosis of hip with no other associated hip pathologies were included in this study. Demographic features, comorbidities, level of activity, range of movement before the development of avascular necrosis, Charnley's class, and laterality were noted. Cementless press-fit extensively porous-coated acetabular cup with or without cancellous screws and cementless press-fit extensively hydroxyapatite coated femoral stem were used through modified Gibson's posterior approach. The patients were checked for early and late complications, the position of acetabular and femoral components by radiography, and overall performance by Harris Hip Score (HHS) and modified HHS over a period of 12 months. All statistical analyses were performed using Statistical Package for Social Sciences (SPSS) version 19.0 (IBM Corp, Armonk, NY). Results The mean age was 43.9±6.7 years with 21 (70%) patients ranging from 40 to 60 years of age. There were 22 (73%) male and 8 (27%) female patients. Nine (30%) patients had diabetes mellitus, eight (27%) had hypertension, two (7%) had other comorbidities, and eleven (37%) had no comorbidities. A total of 11 (37%) patients were highly active, 18 (60%) were moderately active, and 1 (3%) was non-active before developing avascular necrosis. There were 4 (13%) patients in Charnley's class I, 15 (50%) in Charnley's class II, and 11 (37%) in Charnley's class III. Fifteen (50%) patients were operated on the left side, seven (23%) on the right side, and eight (27%) bilaterally. No significant early or late complications were noted. Acetabular component was found to be anteverted in 22 (73%), retroverted in zero (0%), neutral in 8 (27%), <35o inclined in 0 (0%), 35o-50o inclined in 23 (77%), and >50o inclined in 7 (23%) patients, while femoral component was found neutral in 28 (93%), valgus in 2 (7%), and varus in zero (0%) patients on radiography at follow-up. On functional assessment, the HHS was 100% in 27 (90%) patients, 96% in 2 (7%) patients, and 83% in 1 (3%) patient with an average of 99.2%, while 29 (97%) patients had excellent and only 1 (3%) patient had a good outcome on modified HHS. Conclusions Cementless total hip arthroplasty, performed in patients <60 years of age and avascular necrosis of the hip with no other associated hip pathologies, has excellent functional outcomes with no pain, limping, physical deformity, difficulty in walking, difficulty in climbing stairs, difficulty using public transport, difficulty in sitting, or difficulty in wearing shoes and socks. They usually attain normal limb length and range of movement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...