Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(3): 1306-1323, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38086742

RESUMO

Linear cyanide-bridged polymetallic complexes, which undergo photoinduced metal-to-metal charge transfer, represent prototypical systems for studying long-range electron-transfer reactions and understanding the role played by specific solute-solvent interactions in modulating the excited-state dynamics. To tackle this problem, while achieving a statistically meaningful description of the solvent and of its relaxation, one needs a computational approach capable of handling large polynuclear transition-metal complexes, both in their ground and excited states, as well as the ability to follow their dynamics in several environments up to nanosecond time scales. Here, we present a mixed quantum classical approach, which combines large-scale molecular dynamics (MD) simulations based on an accurate quantum mechanically derived force field (QMD-FF) and self-consistent QMD polarized point charges, with IR and UV-vis spectral calculations to model the solvation dynamics and optical properties of a cyano-bridged trinuclear mixed-valence compound (trans-[(NC)5FeIII(µ-CN)RuII(pyridine)4(µ-NC)FeIII(CN)5]4-). We demonstrate the reliability of the QMD-FF/MD approach in sampling the solute conformational space and capturing the local solute-solvent interactions by comparing the results with higher-level quantum mechanics/molecular mechanics (QM/MM) MD reference data. The IR spectra calculated along the classical MD trajectories in different solvents correctly predict the red shift of the CN stretching band in the aprotic medium (acetonitrile) and the subtle differences measured in water and methanol, respectively. By explicitly including the solvent molecules around the cyanide ligands and calculating the thermal averaged absorption spectra using time-dependent density functional theory calculations within the Tamm-Dancoff approximation, the experimental solvatochromic shift is quantitatively reproduced going from water to methanol, while it is overestimated for acetonitrile. This discrepancy can likely be traced back to the lack of important dispersion interactions between the solvent cyano groups and the pyridine substituents in our micro solvation model. The proposed protocol is applied to the ground state in water, methanol, and acetonitrile and can be flexibly generalized to study excited-state nonequilibrium solvation dynamics.

2.
Nat Commun ; 14(1): 3384, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37291130

RESUMO

Femtosecond pump-probe spectroscopy using ultrafast optical and infrared pulses has become an essential tool to discover and understand complex electronic and structural dynamics in solvated molecular, biological, and material systems. Here we report the experimental realization of an ultrafast two-color X-ray pump X-ray probe transient absorption experiment performed in solution. A 10 fs X-ray pump pulse creates a localized excitation by removing a 1s electron from an Fe atom in solvated ferro- and ferricyanide complexes. Following the ensuing Auger-Meitner cascade, the second X-ray pulse probes the Fe 1s → 3p transitions in resultant novel core-excited electronic states. Careful comparison of the experimental spectra with theory, extracts +2 eV shifts in transition energies per valence hole, providing insight into correlated interactions of valence 3d with 3p and deeper-lying electrons. Such information is essential for accurate modeling and predictive synthesis of transition metal complexes relevant for applications ranging from catalysis to information storage technology. This study demonstrates the experimental realization of the scientific opportunities possible with the continued development of multicolor multi-pulse X-ray spectroscopy to study electronic correlations in complex condensed phase systems.


Assuntos
Complexos de Coordenação , Espectroscopia por Absorção de Raios X , Raios X
3.
Inorg Chem ; 62(25): 9904-9911, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37314410

RESUMO

The electronic structure and dynamics of ruthenium complexes are widely studied given their use in catalytic and light-harvesting materials. Here we investigate three model Ru complexes, [RuIII(NH3)6]3+, [RuII(bpy)3]2+, and [RuII(CN)6]4-, with L3-edge 2p3d resonant inelastic X-ray scattering (RIXS) to probe unoccupied 4d valence orbitals and occupied 3d orbitals and to gain insight into the interactions between these levels. The 2p3d RIXS maps contain a higher level of spectral information than the L3 X-ray absorption near edge structure (XANES). This study provides a direct measure of the 3d spin-orbit splittings of 4.3, 4.0, and 4.1 eV between the 3d5/2 and 3d3/2 orbitals of the [RuIII(NH3)6]3+, [RuII(bpy)3]2+, and [RuII(CN)6]4- complexes, respectively.

4.
J Phys Chem Lett ; 13(1): 378-386, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34985900

RESUMO

Quantifying charge delocalization associated with short-lived photoexcited states of molecular complexes in solution remains experimentally challenging, requiring local element specific femtosecond experimental probes of time-evolving electron transfer. In this study, we quantify the evolving valence hole charge distribution in the photoexcited charge transfer state of a prototypical mixed valence bimetallic iron-ruthenium complex, [(CN)5FeIICNRuIII(NH3)5]-, in water by combining femtosecond X-ray spectroscopy measurements with time-dependent density functional theory calculations of the excited-state dynamics. We estimate the valence hole charge that accumulated at the Fe atom to be 0.6 ± 0.2, resulting from excited-state metal-to-metal charge transfer, on an ∼60 fs time scale. Our combined experimental and computational approach provides a spectroscopic ruler for quantifying excited-state valency in solvated complexes.

6.
J Phys Chem Lett ; 12(40): 9840-9847, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34606267

RESUMO

Excited-state intramolecular proton transfer (ESIPT) is a fundamental chemical process with several applications. Ultrafast ESIPT involves coupled electronic and atomic motions and has been primarily studied using femtosecond optical spectroscopy. X-ray spectroscopy is particularly useful because it is element-specific and enables direct, individual probes of the proton-donating and -accepting atoms. Herein, we report a computational study to resolve the ESIPT in 10-hydroxybenzo[h]quinoline (HBQ), an intramolecularly hydrogen bonded compound. We use linear-response time-dependent density functional theory (LR-TDDFT) combined with ab initio molecular dynamics (AIMD) and time-resolved X-ray absorption spectroscopy (XAS) computations to track the ultrafast excited-state dynamics. Our results reveal clear X-ray spectral signatures of coupled electronic and atomic motions during and following ESIPT at the oxygen and nitrogen K-edge, paving the way for future experiments at X-ray free electron lasers.

7.
J Chem Phys ; 154(21): 214107, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240961

RESUMO

Femtosecond x-ray pump-x-ray probe experiments are currently possible at free electron lasers such as the linac coherent light source, which opens new opportunities for studying solvated transition metal complexes. In order to make the most effective use of these kinds of experiments, it is necessary to determine which chemical properties an x-ray probe pulse will measure. We have combined electron cascade calculations and excited-state time-dependent density functional theory calculations to predict the initial state prepared by an x-ray pump and the subsequent x-ray probe spectra at the Fe K-edge in the solvated model transition metal complex, K4FeII(CN)6. We find several key spectral features that report on the ligand-field splitting and the 3p and 3d electron interactions. We then show how these features could be measured in an experiment.

8.
J Chem Phys ; 154(18): 184202, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241007

RESUMO

Experimental demonstrations of polarization-selection two-dimensional Vibrational-Electronic (2D VE) and 2D Electronic-Vibrational (2D EV) spectroscopies aim to map the magnitudes and spatial orientations of coupled electronic and vibrational coordinates in complex systems. The realization of that goal depends on our ability to connect spectroscopic observables with molecular structural parameters. In this paper, we use a model Hamiltonian consisting of two anharmonically coupled vibrational modes in electronic ground and excited states with linear and bilinear vibronic coupling terms to simulate polarization-selective 2D EV and 2D VE spectra. We discuss the relationships between the linear vibronic coupling and two-dimensional Huang-Rhys parameters and between the bilinear vibronic coupling term and Duschinsky mixing. We develop a description of the vibronic transition dipoles and explore how the Hamiltonian parameters and non-Condon effects impact their amplitudes and orientations. Using simulated polarization-selective 2D EV and 2D VE spectra, we show how 2D peak positions, amplitudes, and anisotropy can be used to measure parameters of the vibronic Hamiltonian and non-Condon effects. This paper, along with the first in the series, provides the reader with a detailed description of reading, simulating, and analyzing multimode, polarization-selective 2D EV and 2D VE spectra with an emphasis on extracting vibronic coupling parameters from complex spectra.

9.
J Chem Phys ; 154(18): 184201, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241026

RESUMO

Two-dimensional Electronic-Vibrational (2D EV) spectroscopy and two-dimensional Vibrational-Electronic (2D VE) spectroscopy are among the newest additions to the coherent multidimensional spectroscopy toolbox, and they are directly sensitive to vibronic couplings. In this first of two papers, the complete orientational response functions are developed for a model system consisting of two coupled anharmonic oscillators and two electronic states in order to simulate polarization-selective 2D EV and 2D VE spectra with arbitrary combinations of linearly polarized electric fields. Here, we propose analytical methods to isolate desired signals within complicated spectra and to extract the relative orientation between vibrational and vibronic dipole moments of the model system using combinations of polarization-selective 2D EV and 2D VE spectral features. Time-dependent peak amplitudes of coherence peaks are also discussed as means for isolating desired signals within the time-domain. This paper serves as a field guide for using polarization-selective 2D EV and 2D VE spectroscopies to map coupled vibronic coordinates on the molecular frame.

10.
Chem Sci ; 12(23): 8088-8095, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34194698

RESUMO

We demonstrate how optical cavities can be exploited to control both valence- and core-excitations in a prototypical model transition metal complex, ferricyanide ([Fe(iii)(CN)6]3-), in an aqueous environment. The spectroscopic signatures of hybrid light-matter polariton states are revealed in UV/Vis and X-ray absorption, and stimulated X-ray Raman signals. In an UV/Vis cavity, the absorption spectrum exhibits the single-polariton states arising from the cavity photon mode coupling to both resonant and off-resonant valence-excited states. We further show that nonlinear stimulated X-ray Raman signals can selectively probe the bipolariton states via cavity-modified Fe core-excited states. This unveils the correlation between valence polaritons and dressed core-excitations. In an X-ray cavity, core-polaritons are generated and their correlations with the bare valence-excitations appear in the linear and nonlinear X-ray spectra.

11.
Chem Sci ; 12(10): 3713-3725, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-34163645

RESUMO

Ru-complexes are widely studied because of their use in biological applications and photoconversion technologies. We reveal novel insights into the chemical bonding of a series of Ru(ii)- and Ru(iii)-complexes by leveraging recent advances in high-energy-resolution tender X-ray spectroscopy and theoretical calculations. We perform Ru 2p4d resonant inelastic X-ray scattering (RIXS) to probe the valence excitations in dilute solvated Ru-complexes. Combining these experiments with a newly developed theoretical approach based on time-dependent density functional theory, we assign the spectral features and quantify the metal-ligand bonding interactions. The valence-to-core RIXS features uniquely identify the metal-centered and charge transfer states and allow extracting the ligand-field splitting for all the complexes. The combined experimental and theoretical approach described here is shown to reliably characterize the ground and excited valence states of Ru complexes, and serve as a basis for future investigations of ruthenium, or other 4d metals active sites, in biological and chemical applications.

12.
J Chem Theory Comput ; 17(5): 3031-3038, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33909424

RESUMO

We present a time-dependent density functional theory (TDDFT) approach to compute the light-matter couplings between two different manifolds of excited states relative to a common ground state in the context of 4d transition metal systems. These quantities are the necessary ingredients to solve the Kramers-Heisenberg (KH) equation for resonant inelastic X-ray scattering (RIXS) and several other types of two-photon spectroscopies. The procedure is based on the pseudo-wavefunction approach, where the solutions of a TDDFT calculation can be used to construct excited-state wavefunctions, and on the restricted energy window approach, where a manifold of excited states can be rigorously defined based on the energies of the occupied molecular orbitals involved in the excitation process. Thus, the present approach bypasses the need to solve the costly TDDFT quadratic-response equations. We illustrate the applicability of the method to 4d transition metal molecular complexes by calculating the 2p4d RIXS maps of three representative ruthenium complexes and comparing them to experimental results. The method can capture all the experimental features in all three complexes to allow the assignment of the experimental peaks, with relative energies correct to within ∼0.6 eV at the cost of two independent TDDFT calculations.

13.
Nat Chem ; 13(4): 343-349, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589787

RESUMO

It is well known that the solvent plays a critical role in ultrafast electron-transfer reactions. However, solvent reorganization occurs on multiple length scales, and selectively measuring short-range solute-solvent interactions at the atomic level with femtosecond time resolution remains a challenge. Here we report femtosecond X-ray scattering and emission measurements following photoinduced charge-transfer excitation in a mixed-valence bimetallic (FeiiRuiii) complex in water, and their interpretation using non-equilibrium molecular dynamics simulations. Combined experimental and computational analysis reveals that the charge-transfer excited state has a lifetime of 62 fs and that coherent translational motions of the first solvation shell are coupled to the back electron transfer. Our molecular dynamics simulations identify that the observed coherent translational motions arise from hydrogen bonding changes between the solute and nearby water molecules upon photoexcitation, and have an amplitude of tenths of ångströms, 120-200 cm-1 frequency and ~100 fs relaxation time. This study provides an atomistic view of coherent solvent reorganization mediating ultrafast intramolecular electron transfer.

14.
J Chem Phys ; 153(10): 100401, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32933270
15.
J Phys Chem Lett ; 11(4): 1558-1563, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004009

RESUMO

We experimentally demonstrate polarization-selective two-dimensional (2D) vibrational-electronic (VE) spectroscopy on a transition-metal mixed-valence complex where the cyanide stretching vibrations are coupled to the metal-to-metal charge-transfer transition. A simultaneous fitting of the parallel and crossed polarized 2D VE spectra quantifies the relative vibronic coupling strengths and angles between the charge-transfer transition and three coupled cyanide stretching vibrations in a mode-specific manner. In particular, we find that the bridging vibration, which modulates the distance between the transition-metal centers, is oriented nearly parallel to the charge-transfer axis and is 9 times more strongly coupled to the electronic transition than the radial vibration, which is oriented almost perpendicular to the charge-transfer axis. The results from this experiment allow us to map the spectroscopically observed vibronic coordinates onto the molecular frame providing a general method to spatially resolve vibronic energy transfer on a femtosecond time scale.

16.
Nat Commun ; 10(1): 5621, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819052

RESUMO

The complex choreography of electronic, vibrational, and vibronic couplings used by photoexcited molecules to transfer energy efficiently is remarkable, but an unambiguous description of the temporally evolving vibronic states governing these processes has proven experimentally elusive. We use multidimensional electronic-vibrational spectroscopy to identify specific time-dependent excited state vibronic couplings involving multiple electronic states, high-frequency vibrations, and low-frequency vibrations which participate in ultrafast intersystem crossing and subsequent relaxation of a photoexcited transition metal complex. We discover an excited state vibronic mechanism driving long-lived charge separation consisting of an initial electronically-localized vibrational wavepacket which triggers delocalization onto two charge transfer states after propagating for ~600 femtoseconds. Electronic delocalization consequently occurs through nonadiabatic internal conversion driven by a 50 cm-1 coupling resulting in vibronic coherence transfer lasting for ~1 picosecond. This study showcases the power of multidimensional electronic-vibrational spectroscopy to elucidate complex, non-equilibrium energy and charge transfer mechanisms involving multiple molecular coordinates.

17.
J Chem Phys ; 151(14): 144114, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615256

RESUMO

With the help of newly developed X-ray free-electron laser (XFEL) sources, creating double core holes (DCHs) simultaneously at the same or different atomic sites in a molecule has now become possible. DCH X-ray emission is a new form of X-ray nonlinear spectroscopy that can be studied with a XFEL. Here, we computationally explore the metal K-edge valence-to-core (VtC) X-ray emission spectroscopy (XES) of metal/metal and metal/ligand DCH states in a series of transition metal complexes with time-dependent density functional theory. The simulated DCH VtC-XES signals are compared with conventional single core hole (SCH) XES signals. The energy shifts and intensity changes of the DCH emission lines with respect to the corresponding SCH-XES features are fingerprints of the coupling between the second core hole and the occupied orbitals around the DCHs that contain important chemical bonding information of the complex. The difference between delocalized/localized core hole models on DCH VtC-XES is also briefly discussed. We theoretically demonstrate that DCH XES provides subtle information on the local electronic structure around metal centers in transition metal complexes beyond conventional linear XES. Our predicted changes from calculations between SCH-XES and DCH-XES features should be detectable with modern XFEL sources.

18.
J Phys Chem Lett ; 10(8): 1833-1839, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30925052

RESUMO

Developing interfacial probes of ligand-nanocluster interactions is crucial for understanding and tailoring the optoelectronic properties of these emerging nanomaterials. Using transient IR spectroscopy, we demonstrate that ligand vibrational modes of oleate-capped 1.3 nm InP nanoclusters report on the photogenerated exciton. The exciton induces an intensity change in the asymmetric carboxylate stretching mode by 57% while generating no appreciable shift in frequency. Thus, the observed difference signal is attributed to an exciton-induced change in the dipole magnitude of the asymmetric carboxylate stretching mode. Additionally, the transient IR data reveal that the infrared dipole change is dependent on the geometry of the ligand bound to the nanocluster. The experimental results are interpreted using TDDFT calculations, which identify how the spatial dependence of an exciton-induced electron density shift affects the vibrational motion of the carboxylate anchors. More broadly, this work demonstrates transient IR spectroscopy as a useful method for characterizing ligand-nanocluster coupling interactions.

19.
Rev Sci Instrum ; 89(11): 113104, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501350

RESUMO

Femtosecond Fourier transform two-dimensional vibrational-electronic (2D VE) spectroscopy is a recently developed third-order nonlinear spectroscopic technique to measure coupled electronic and vibrational motions in the condensed phase. The viability of femtosecond multidimensional spectroscopy as an analytical tool requires improvements in data collection and processing to enhance the signal-to-noise ratio and increase the amount of data collected in these experiments. Here a continuous fast scanning technique for the efficient collection of 2D VE spectroscopy is described. The resulting 2D VE spectroscopic method gains sensitivity by reducing the effect of laser drift, as well as decreasing the data collection time by a factor of 10 for acquiring spectra with a high signal-to-noise ratio within 3 dB of the more time intensive step scanning methods. This work opens the door to more comprehensive studies where 2D VE spectra can be collected as a function of external parameters such as temperature, pH, and polarization of the input electric fields.

20.
J Phys Chem Lett ; 9(21): 6289-6295, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339410

RESUMO

This study uses polarization-selective two-dimensional electronic-vibrational (2D EV) spectroscopy to map intramolecular charge transfer in the well-known solar cell dye, [Ru(dcbpy)2(NCS)2]4- (N34-), dissolved in water. A static snapshot of the vibronic couplings present in aqueous N34- is reported. At least three different initially excited singlet metal-to-ligand charge-transfer (MLCT) states are observed to be coupled to vibrational modes probed in the lowest energy triplet MLCT state, emphasizing the role of vibronic coupling in intersystem crossing. Angles between electronic and vibrational transition dipole moments are extracted from spectrally isolated 2D EV peaks and compared with calculations to develop a microscopic description for how vibrations participate with 1MLCT states in charge transfer and intersystem crossing. These results suggest that 1MLCT states with significant electron density in the electron-donating plane formed by the Ru-(NCS)2 will participate strongly in charge transfer through these vibronically coupled degrees of freedom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...