Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 20(11): 5103-5114, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34699229

RESUMO

Gene products can affect the concentrations of small molecules (aka "metabolites"), and conversely, some metabolites can modulate the concentrations of gene transcripts. While many specific instances of this interplay have been revealed, a global approach to systematically uncover human gene-metabolite interactions is still lacking. We performed a metabolome- and transcriptome-wide association study to identify genes influencing the human metabolome using untargeted metabolome features, extracted from 1H nuclear magnetic resonance spectroscopy (NMR) of urine samples, and gene expression levels, quantified from RNA-Seq of lymphoblastoid cell lines (LCL) from 555 healthy individuals. We identified 20 study-wide significant associations corresponding to 15 genes, of which 5 associations (with 2 genes) were confirmed with follow-up NMR data. Using metabomatching, we identified the metabolites corresponding to metabolome features associated with the genes, namely, N-acetylated compounds with ALMS1 and trimethylamine (TMA) with HPS1. Finally, Mendelian randomization analysis supported a potential causal link between the expression of genes in both the ALMS1- and HPS1-loci and their associated metabolite concentrations. In the case of HPS1, we additionally observed that TMA concentration likely exhibits a reverse causal effect on HPS1 expression levels, indicating a negative feedback loop. Our study highlights how the integration of metabolomics, gene expression, and genetic data can pinpoint causal genes modulating metabolite concentrations.


Assuntos
Líquidos Corporais , Transcriptoma , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metaboloma/genética , Metabolômica/métodos
2.
Cells ; 9(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722101

RESUMO

Cells polarize for growth, motion, or mating through regulation of membrane-bound small GTPases between active GTP-bound and inactive GDP-bound forms. Activators (GEFs, GTP exchange factors) and inhibitors (GAPs, GTPase activating proteins) provide positive and negative feedbacks. We show that a reaction-diffusion model on a curved surface accounts for key features of polarization of model organism fission yeast. The model implements Cdc42 membrane diffusion using measured values for diffusion coefficients and dissociation rates and assumes a limiting GEF pool (proteins Gef1 and Scd1), as in prior models for budding yeast. The model includes two types of GAPs, one representing tip-localized GAPs, such as Rga3; and one representing side-localized GAPs, such as Rga4 and Rga6, that we assume switch between fast and slow diffusing states. After adjustment of unknown rate constants, the model reproduces active Cdc42 zones at cell tips and the pattern of GEF and GAP localization at cell tips and sides. The model reproduces observed tip-to-tip oscillations with periods of the order of several minutes, as well as asymmetric to symmetric oscillations transitions (corresponding to NETO "new end take off"), assuming the limiting GEF amount increases with cell size.


Assuntos
Polaridade Celular/imunologia , Schizosaccharomyces/imunologia , Humanos , Modelos Teóricos
3.
J Proteome Res ; 18(9): 3360-3368, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31318216

RESUMO

Identification of metabolites in large-scale 1H NMR data from human biofluids remains challenging due to the complexity of the spectra and their sensitivity to pH and ionic concentrations. In this work, we tested the capacity of three analysis tools to extract metabolite signatures from 968 NMR profiles of human urine samples. Specifically, we studied sets of covarying features derived from principal component analysis (PCA), the iterative signature algorithm (ISA), and averaged correlation profiles (ACP), a new method we devised inspired by the STOCSY approach. We used our previously developed metabomatching method to match the sets generated by these algorithms to NMR spectra of individual metabolites available in public databases. On the basis of the number and quality of the matches, we concluded that ISA and ACP can robustly identify ten and nine metabolites, respectively, half of which were shared, while PCA did not produce any signatures with robust matches.


Assuntos
Líquidos Corporais/metabolismo , Metabolômica/estatística & dados numéricos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/metabolismo , Algoritmos , Bases de Dados Factuais , Humanos , Metaboloma/genética , Análise de Componente Principal , Proteínas/química , Proteínas/classificação
4.
Gigascience ; 8(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535405

RESUMO

BACKGROUND: Metabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism's metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological, and many other applied biological domains. Its computationally intensive nature has driven requirements for open data formats, data repositories, and data analysis tools. However, the rapid progress has resulted in a mosaic of independent, and sometimes incompatible, analysis methods that are difficult to connect into a useful and complete data analysis solution. FINDINGS: PhenoMeNal (Phenome and Metabolome aNalysis) is an advanced and complete solution to set up Infrastructure-as-a-Service (IaaS) that brings workflow-oriented, interoperable metabolomics data analysis platforms into the cloud. PhenoMeNal seamlessly integrates a wide array of existing open-source tools that are tested and packaged as Docker containers through the project's continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated, and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi, and Pachyderm. CONCLUSIONS: PhenoMeNal constitutes a keystone solution in cloud e-infrastructures available for metabolomics. PhenoMeNal is a unique and complete solution for setting up cloud e-infrastructures through easy-to-use web interfaces that can be scaled to any custom public and private cloud environment. By harmonizing and automating software installation and configuration and through ready-to-use scientific workflow user interfaces, PhenoMeNal has succeeded in providing scientists with workflow-driven, reproducible, and shareable metabolomics data analysis platforms that are interfaced through standard data formats, representative datasets, versioned, and have been tested for reproducibility and interoperability. The elastic implementation of PhenoMeNal further allows easy adaptation of the infrastructure to other application areas and 'omics research domains.


Assuntos
Metabolômica/métodos , Software , Computação em Nuvem , Humanos , Fluxo de Trabalho
5.
PLoS Comput Biol ; 14(7): e1006317, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30028833

RESUMO

In mating fission yeast cells, sensing and response to extracellular pheromone concentrations occurs through an exploratory Cdc42 patch that stochastically samples the cell cortex before stabilizing towards a mating partner. Active Ras1 (Ras1-GTP), an upstream regulator of Cdc42, and Gap1, the GTPase-activating protein for Ras1, localize at the patch. We developed a reaction-diffusion model of Ras1 patch appearance and disappearance with a positive feedback by a Guanine nucleotide Exchange Factor (GEF) and Gap1 inhibition. The model is based on new estimates of Ras1-GDP, Ras1-GTP and Gap1 diffusion coefficients and rates of cytoplasmic exchange studied by FRAP. The model reproduces exploratory patch behavior and lack of Ras1 patch in cells lacking Gap1. Transition to a stable patch can occur by change of Gap1 rates constants or local increase of the positive feedback rate constants. The model predicts that the patch size and number of patches depend on the strength of positive and negative feedbacks. Measurements of Ras1 patch size and number in cells overexpressing the Ras1 GEF or Gap1 are consistent with the model.


Assuntos
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Proteínas ras/metabolismo , Actinas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Modelos Biológicos , Feromônios/metabolismo , Ligação Proteica , Reprodução , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Transdução de Sinais , Processos Estocásticos , Proteína cdc42 de Ligação ao GTP/metabolismo
6.
J Cell Biol ; 217(4): 1467-1483, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29453312

RESUMO

In the fission yeast Schizosaccharomyces pombe, pheromone signaling engages a signaling pathway composed of a G protein-coupled receptor, Ras, and a mitogen-activated protein kinase (MAPK) cascade that triggers sexual differentiation and gamete fusion. Cell-cell fusion requires local cell wall digestion, which relies on an initially dynamic actin fusion focus that becomes stabilized upon local enrichment of the signaling cascade on the structure. We constructed a live-reporter of active Ras1 (Ras1-guanosine triphosphate [GTP]) that shows Ras activity at polarity sites peaking on the fusion structure before fusion. Remarkably, constitutive Ras1 activation promoted fusion focus stabilization and fusion attempts irrespective of cell pairing, leading to cell lysis. Ras1 activity was restricted by the guanosine triphosphatase-activating protein Gap1, which was itself recruited to sites of Ras1-GTP and was essential to block untimely fusion attempts. We propose that negative feedback control of Ras activity restrains the MAPK signal and couples fusion with cell-cell engagement.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Proteínas ras/metabolismo , Polaridade Celular , Ativação Enzimática , Retroalimentação Fisiológica , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Cinética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais , Proteínas ras/genética
7.
Curr Biol ; 26(8): 1117-25, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27020743

RESUMO

Cell pairing is central for many processes, including immune defense, neuronal connection, hyphal fusion, and sexual reproduction. How does a cell orient toward a partner, especially when faced with multiple choices? Fission yeast Schizosaccharomyces pombe P and M cells, which respectively express P and M factor pheromones [1, 2], pair during the mating process induced by nitrogen starvation. Engagement of pheromone receptors Map3 and Mam2 [3, 4] with their cognate pheromone ligands leads to activation of the Gα protein Gpa1 to signal sexual differentiation [3, 5, 6]. Prior to cell pairing, the Cdc42 GTPase, a central regulator of cell polarization, forms dynamic zones of activity at the cell periphery at distinct locations over time [7]. Here we show that Cdc42-GTP polarization sites contain the M factor transporter Mam1, the general secretion machinery, which underlies P factor secretion, and Gpa1, suggesting that these are sub-cellular zones of pheromone secretion and signaling. Zone lifetimes scale with pheromone concentration. Computational simulations of pair formation through a fluctuating zone show that the combination of local pheromone release and sensing, short pheromone decay length, and pheromone-dependent zone stabilization leads to efficient pair formation. Consistently, pairing efficiency is reduced in the absence of the P factor protease. Similarly, zone stabilization at reduced pheromone levels, which occurs in the absence of the predicted GTPase-activating protein for Ras, leads to reduction in pairing efficiency. We propose that efficient cell pairing relies on fluctuating local signal emission and perception, which become locked into place through stimulation.


Assuntos
Feromônios/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/citologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fusão Celular , Polaridade Celular , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...