Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Chem Kinet ; 52(11)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36452266

RESUMO

The reactions between OH radicals and hydrogen halides (HCl, HBr, HI) have been studied between 298 and 460 K by using a discharge flow-electron paramagnetic resonance technique. The rate constants were found to be k HCl(298 K) = (7.9 ± 1.3) × 10-13 cm3 molecule-1 s-1 with a weak positive temperature dependence, k HBr (298-460 K) = (1.04 ± 0.2) × 10-11 cm3 molecule-1 s-1, and k HI(298 K) = (3.0 ± 0.3) × 10-11 cm3 molecule-1 s-1, respectively. The homogeneous nature of these reactions has been experimentally tested.

2.
J Phys Chem A ; 118(45): 10770-7, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25242348

RESUMO

Rate constants for the gas phase reactions of OH radicals with three partially fluorinated ethers, CH3OCF3 (kHFE-143a), CH3OCHF2 (kHFE-152a), and CHF2OCH2CF3 (kHFE-245fa2), were measured using a discharge flow-electron paramagnetic resonance technique over the temperature range 298-460 K. The temperature dependences of the rate constants can be represented by the following expressions: kHFE-143a(T) = (1.10 ± 0.20) × 10(-12) × exp{-(1324 ± 61)/T} cm(3) molecule(-1) s(-1); kHFE-152a(T) = (11.6 ± 4.2) × 10(-12) × exp{-(1728 ± 133)/T} cm(3) molecule(-1) s(-1); and kHFE-245fa2(T) = (3.04 ± 0.57) × 10(-12) × exp{-(1665 ± 66)/T} cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH were estimated to be 5.2, 1.9, and 5.6 years, respectively. The IR absorption cross sections of these fluorinated ethers were measured between 400 and 2000 cm(-1), and their global warming potentials were estimated.

3.
J Phys Chem A ; 117(47): 12208-15, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24156307

RESUMO

The rate coefficient (k1) of the reaction between hydroxyl radical and hydroxyacetone, which remained so far controversial, was determined over the temperature range 290-500 K using pulsed-laser photolysis coupled to pulsed-laser induced fluorescence (PLP-PLIF). Hydroxyl radical was generated by pulsed photolysis of H2O2 at 248 nm. The results show that at a pressure of 50 Torr He, the rate coefficient obeys a negative temperature dependence k1(T) = (1.77 ± 0.19) × 10(-12) exp((353 ± 36)/T) cm(3) molecule(-1) s(-1) for temperatures between 290 and 380 K, in good agreement with the results of Dillon et al. (Phys. Chem. Chem. Phys. 2006, 8, 236) at 60 Torr He. However, always at 50 Torr He but for the higher temperature range 410-500 K, a positive temperature dependence was found: k1(T) = (1.14 ± 0.25) × 10(-11) exp(-(378 ± 102)/T) cm(3) molecule(-1) s(-1), close to the expression obtained by Baasandorj et al. (J. Phys. Chem. A 2009, 113, 10495) for pressures of 2 and 5 Torr He but at lower temperatures, 280-360 K, where their k1(T) values are well below these of Dillon et al. and of this work. Moreover, the rate coefficient k1(301 K) determined as a function of pressure, from 10 to 70 Torr He, shows a pronounced decrease once the pressure is below ∼40 Torr He, thus explaining the disparity between the higher-pressure data of Dillon et al. and the lower-pressure results of Baasandorj et al. The pressure dependence of k1 and of its temperature-dependence below ∼400 K is rationalized by the reaction proceeding via a hydrogen-bonded prereactive complex (PRC) and a submerged transition state, such that at high pressures collisionally thermalized PRCs contribute additional reactive flux over and through the submerged barrier. The high-pressure rate coefficient data both of Dillon et al. and of this work over the combined range 230-500 K can be represented by the theory-based expression k1(T) = 5.3 × 10(-20) × T(2.6) exp(1100/T) cm(3) molecule(-1) s(-1).


Assuntos
Acetona/análogos & derivados , Radical Hidroxila/química , Temperatura , Acetona/química , Gases/química , Pressão , Teoria Quântica
4.
J Phys Chem A ; 117(18): 3809-18, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23537427

RESUMO

Measurements of the rate constants for the gas phase reactions of OH radicals with bromoform (CHBr3) and epichlorohydrin (C3H5ClO) were performed using a flash photolysis resonance-fluorescence technique over the temperature range 230-370 K. The temperature dependences of the rate constants can be represented by the following expressions: kBF(230-370 K) = (9.94 ± 0.76) × 10(-13) exp[-(387 ± 22)/T] cm(3) molecule(-1) s(-1) and kECH(230-370 K) = 1.05 × 10(-14)(T/298)(5.16) exp(+1082/T) cm(3) molecule(-1) s(-1). Rate constants for the reactions of OH with CHCl2Br and CHClBr2 were measured between 230 and 330 K. They can be represented by the following expressions: kDCBM(230-330 K) = (9.4 ± 1.3) × 10(-13) exp[-(513 ± 37)/T] cm(3) molecule(-1) s(-1) and kCDBM(230-330 K) = (9.0 ± 1.9) × 10(-13) exp[-(423 ± 61)/T] cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH were estimated to be 57, 39, 72, and 96 days, respectively. The total atmospheric lifetimes of the Br-containing methanes due to both reaction with OH and photolysis were calculated to be 22, 50, and 67 days for CHBr3, CHClBr2, and CHCl2Br, respectively.

5.
J Phys Chem A ; 116(24): 6188-98, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22372969

RESUMO

Rate constants for the gas phase reactions of OH radicals with 2-propanol and three fluorine substituted 2-propanols, (CH(3))(2)CHOH (k(0)), (CF(3))(2)CHOH (k(1)), (CF(3))(2)C(OH)CH(3) (k(2)), and (CF(3))(3)COH (k(3)), were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220-370 K. The Arrhenius plots were found to exhibit noticeable curvature for all four reactions. The temperature dependences of the rate constants can be represented by the following expressions: k(0)(T) = 1.46 × 10(-11) exp{-883/T} + 1.30 × 10(-12) exp{+371/T} cm(3) molecule(-1) s(-1); k(1)(T) = 1.19 × 10(-12) exp{-1207/T} + 7.85 × 10(-16) exp{+502/T } cm(3) molecule(-1) s(-1); k(2)(T) = 1.68 × 10(-12) exp{-1718/T} + 7.32 × 10(-16) exp{+371/T} cm(3) molecule(-1) s(-1); k(3)(T) = 3.0 × 10(-20) × (T/298)(11.3) exp{+3060/T} cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH were estimated to be 2.4 days and 1.9, 6.3, and 46 years, respectively. UV absorption cross sections were measured between 160 and 200 nm. The IR absorption cross sections of the three fluorinated compounds were measured between 450 and 1900 cm(-1), and their global warming potentials were estimated.


Assuntos
2-Propanol/química , Radical Hidroxila/química , Atmosfera/química , Espectrofotometria Infravermelho , Temperatura
6.
Phys Chem Chem Phys ; 13(41): 18600-8, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21947258

RESUMO

Nitrogen trifluoride, NF(3), a trace gas of purely anthropogenic origin with a large global warming potential is accumulating in the Earth's atmosphere. Large uncertainties are however associated with its atmospheric removal rate. In this work, experimental and theoretical kinetic tools were used to study the reactions of NF(3) with three of the principal gas-phase atmospheric oxidants: O((1)D), OH and O(3). For reaction (R2) with O((1)D), rate coefficients of k(2)(212-356 K) = (2.0 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1) were obtained in direct competitive kinetics experiments, and experimental and theoretical evidence was obtained for F-atom product formation. These results indicate that whilst photolysis in the stratosphere remains the principal fate of NF(3), reaction with O((1)D) is significant and was previously underestimated in atmospheric lifetime calculations. Experimental evidence of F-atom production from 248 nm photolysis of NF(3) was also obtained, indicating that quantum yields for NF(3) destruction remain significant throughout the UV. No evidence was found for reaction (R3) of NF(3) with OH indicating that this process makes little or no contribution to NF(3) removal from the atmosphere. An upper-limit of k(3)(298 K) < 4 × 10(-16) cm(3) molecule(-1) s(-1) was obtained experimentally; theoretical analysis suggests that the true rate coefficient is more than ten orders of magnitude smaller. An upper-limit of k(4)(296 K) < 3 × 10(-25) cm(3) molecule(-1) s(-1) was obtained in experiments to investigate O(3) + NF(3) (R4). Altogether these results underpin calculations of a long (several hundred year) lifetime for NF(3). In the course of this work rate coefficients (in units of 10(-11) cm(3) molecule(-1) s(-1)) for removal of O((1)D) by n-C(5)H(12), k(6) = (50 ± 5) and by N(2), k(7) = (3.1 ± 0.2) were obtained. Uncertainties quoted throughout are 2σ precision only.

7.
J Phys Chem A ; 115(31): 8656-68, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21710989

RESUMO

Rate constants for the gas phase reactions of OH(•) radicals with ethanol and three fluorinated ethyl alcohols, CH(3)CH(2)OH (k(0)), CH(2)FCH(2)OH (k(1)), CHF(2)CH(2)OH (k(2)), and CF(3)CH(2)OH (k(3)) were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit noticeable curvature for all four reactions. The temperature dependences of the rate constants can be represented by the following expressions over the indicated temperature intervals: k(0)(220-370 K) = 5.98 × 10(-13)(T/298)(1.99) exp(+515/T) cm(3) molecule(-1) s(-1), k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1) [for atmospheric modeling purposes, k(0)(T) is essentially temperature-independent below room temperature, k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1)], k(1)(230-370 K) = 3.47 × 10(-14)(T/298)(4.49) exp(+977/T) cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 3.87 × 10(-14)(T/298)(4.25) exp(+578/T) cm(3) molecule(-1) s(-1), and k(3)(220-370 K) = 2.48 × 10(-14)(T/298)(4.03) exp(+418/T) cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH(•) were estimated to be 4, 16, 62, and 171 days, respectively, under the assumption of a well-mixed atmosphere. UV absorption cross sections of all four ethanols were measured between 160 and 215 nm. The IR absorption cross sections of the three fluorinated ethanols were measured between 400 and 1900 cm(-1), and their global warming potentials were estimated.

8.
J Phys Chem A ; 110(47): 12852-9, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17125300

RESUMO

The rate constants for the reaction OH + CH3C(O)OH --> products (1) were determined over the temperature range 287-802 K at 50 and 100 Torr of Ar or N2 bath gas using pulsed laser photolysis generation of OH by CH3C(O)OH photolysis at 193 nm coupled with OH detection by pulsed laser-induced fluorescence. The rate coefficient displays a complex temperature dependence with a sharp minimum at 530 K, indicating the competition between a reaction proceeding through a pre-reactive H-bonded complex to form CH3C(O)O + H2O, expected to prevail at low temperatures, and a direct methyl-H abstraction channel leading to CH2C(O)OH + H2O, which should dominate at high temperatures. The temperature dependence of the rate constant can be described adequately by k1(287-802 K) = 2.9 x 10(-9) exp{-6030 K/T} + 1.50 x 10(-13) exp{515 K/T} cm3 molecule(-1)(s-1), with a value of (8.5 +/- 0.9) x 10-13 cm3 molecule(-1)(s-1) at 298 K. The steep increase in rate constant in the range 550-800 K, which is reported for the first time, implies that direct abstraction of a methyl-H becomes the dominant pathway at temperatures greater than 550 K. However, the data indicates that up to about 800 K direct methyl-H abstraction remains adversely affected by the long-range H-bonding attraction between the approaching OH radical and the carboxyl -C(O)OH functionality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...