Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 66: 102990, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528979

RESUMO

Yes-associated protein (YAP), an important effector protein of the Hippo signaling pathway, acts as a molecular switch in controlling cell proliferation and apoptosis. In this study, a YAP-targeted isogenic sub-clone of the MUSIe002-A was generated, designated as MUSIe002-A-1. The MUSIe002-1 cell line had normal pluripotent stem cell characteristics and karyotype. Its ability to differentiate into three germ layers was confirmed. As reduction of YAP does not disturb the pluripotency of hESCs, this cell line serves as a valuable model to extrapolate the functional role of YAP in stem cell biology and its applications.


Assuntos
Células-Tronco Embrionárias Humanas , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco Embrionárias Humanas/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Sinalização YAP , Linhagem Celular
2.
Stem Cell Res ; 59: 102660, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033856

RESUMO

The MUSIe002-A cell line was established from in vitro fertilization of human sperm and oocytes donated for research with informed consent. This cell line exhibited normal human embryonic stem cell (hESC) characteristics, including typical cell morphology, expression of all pluripotent stem cell markers, and potential to differentiate into three germ layers. A karyotyping analysis revealed 46 XY chromosome and cells that did not have mycoplasma contamination. MUSIe002-A represents a valuable unlimited cell source and is of potential interest for human in vitro stem cell based-models, genetic modifications, and stem cell-based therapy of human disease.

3.
F S Sci ; 2(4): 365-375, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34970648

RESUMO

OBJECTIVE: To demonstrate that functional spermatids can be derived in vitro from nonhuman primate pluripotent stem cells. DESIGN: Green fluorescent protein-labeled, rhesus macaque nonhuman primate embryonic stem cells (nhpESCs) were differentiated into advanced male germ cell lineages using a modified serum-free spermatogonial stem cell culture medium. In vitro-derived round spermatid-like cells (rSLCs) from differentiated nhpESCs were assessed for their ability to fertilize rhesus oocytes by intracytoplasmic sperm(atid) injection. SETTING: Multiple academic laboratory settings. PATIENTS: Not applicable. INTERVENTIONS: Intracytoplasmic sperm(atid) injection of in vitro-derived spermatids from nhpESCs into rhesus macaque oocytes. MAIN OUTCOME MEASURES: Differentiation into spermatogenic cell lineages was measured through multiple assessments including ribonucleic acid sequencing and immunocytochemistry for various spermatogenic markers. In vitro spermatids were assessed for their ability to fertilize oocytes by intracytoplasmic sperm(atid) injection by assessing early fertilization events such as spermatid deoxyribonucleic acid decondensation and pronucleus formation/apposition. Preimplantation embryo development from the one-cell zygote stage to the blastocyst stage was also assessed. RESULTS: Nonhuman primate embryonic stem cells can be differentiated into advanced germ cell lineages, including haploid rSLCs. These rSLCs undergo deoxyribonucleic acid decondensation and pronucleus formation/apposition when microinjected into rhesus macaque mature oocytes, which, after artificial activation and coinjection of ten-eleven translocation 3 protein, undergo embryonic divisions with approximately 12% developing successfully into expanded blastocysts. CONCLUSIONS: This work demonstrates that rSLCs, generated in vitro from primate pluripotent stem cells, mimic many of the capabilities of in vivo round spermatids and perform events essential for preimplantation development. To our knowledge, this work represents, for the first time, that functional spermatid-like cells can be derived in vitro from primate pluripotent stem cells.


Assuntos
Injeções de Esperma Intracitoplásmicas , Espermátides , Animais , Blastocisto , DNA , Desenvolvimento Embrionário , Células-Tronco Embrionárias , Feminino , Fertilização , Humanos , Macaca mulatta , Masculino , Gravidez
4.
J Assist Reprod Genet ; 38(5): 1215-1229, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33611676

RESUMO

PURPOSE: The expansion of CAG (glutamine; Q) trinucleotide repeats (TNRs) predominantly occurs through male lineage in Huntington's disease (HD). As a result, offspring will have larger CAG repeats compared to their fathers, which causes an earlier onset of the disease called genetic anticipation. This study aims to develop a novel in vitro model to replicate CAG repeat instability in early spermatogenesis and demonstrate the biological process of genetic anticipation by using the HD stem cell model for the first time. METHODS: HD rhesus monkey embryonic stem cells (rESCs) were cultured in vitro for an extended period. Male rESCs were used to derive spermatogenic cells in vitro with a 10-day differentiation. The assessment of CAG repeat instability was performed by GeneScan and curve fit analysis. RESULTS: Spermatogenic cells derived from rESCs exhibit progressive expansion of CAG repeats with high daily expansion rates compared to the extended culture of rESCs. The expansion of CAG repeats is cell type-specific and size-dependent. CONCLUSIONS: Here, we report a novel stem cell model that replicates genome instability and CAG repeat expansion in in vitro derived HD monkey spermatogenic cells. The in vitro spermatogenic cell model opens a new opportunity for studying TNR instability and the underlying mechanism of genetic anticipation, not only in HD but also in other TNR diseases.


Assuntos
Células-Tronco Germinativas Adultas/patologia , Animais Geneticamente Modificados/genética , Células-Tronco Embrionárias/patologia , Doença de Huntington/genética , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Instabilidade Genômica/genética , Humanos , Doença de Huntington/patologia , Macaca mulatta/genética , Masculino , Instabilidade de Microssatélites , Repetições de Trinucleotídeos/genética
5.
Epigenetics Chromatin ; 12(1): 67, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722751

RESUMO

BACKGROUND: Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion, resulting in a mutant huntingtin protein. While it is now clear that astrocytes are affected by HD and significantly contribute to neuronal dysfunction and pathogenesis, the alterations in the transcriptional and epigenetic profiles in HD astrocytes have yet to be characterized. Here, we examine global transcription and chromatin accessibility dynamics during in vitro astrocyte differentiation in a transgenic non-human primate model of HD. RESULTS: We found global changes in accessibility and transcription across different stages of HD pluripotent stem cell differentiation, with distinct trends first observed in neural progenitor cells (NPCs), once cells have committed to a neural lineage. Transcription of p53 signaling and cell cycle pathway genes was highly impacted during differentiation, with depletion in HD NPCs and upregulation in HD astrocytes. E2F target genes also displayed this inverse expression pattern, and strong associations between E2F target gene expression and accessibility at nearby putative enhancers were observed. CONCLUSIONS: The results suggest that chromatin accessibility and transcription are altered throughout in vitro HD astrocyte differentiation and provide evidence that E2F dysregulation contributes to aberrant cell-cycle re-entry and apoptosis throughout the progression from NPCs to astrocytes.


Assuntos
Astrócitos/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Doença de Huntington/patologia , Células-Tronco Pluripotentes/metabolismo , Animais , Astrócitos/citologia , Montagem e Desmontagem da Cromatina , Modelos Animais de Doenças , Fatores de Transcrição E2F/metabolismo , Ontologia Genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Macaca mulatta , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/citologia , Transdução de Sinais , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...