Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 409(2): 467-476, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27604268

RESUMO

Glycomics has become an increasingly important field of research since glycans play critical roles in biology processes ranging from molecular recognition and signaling to cellular communication. Glycans often conjugate with other biomolecules, such as proteins and lipids, and alter their properties and functions, so glycan characterization is essential for understanding the effects they have on cellular systems. However, the analysis of glycans is extremely difficult due to their complexity and structural diversity (i.e., the number and identity of monomer units, and configuration of their glycosidic linkages and connectivities). In this work, we coupled ion mobility spectrometry with mass spectrometry (IMS-MS) to characterize glycan standards and biologically important isomers of synthetic αGal-containing O-glycans including glycotopes of the protozoan parasite Trypanosoma cruzi, which is the causative agent of Chagas disease. IMS-MS results showed significant differences for the glycan structural isomers when analyzed in positive and negative polarity and complexed with different metal cations. These results suggest that specific metal ions or ion polarities could be used to target and baseline separate glycan isomers of interest with IMS-MS. Graphical abstract Glycan isomers, such as fructose and glucose, show distinct separations in positive and negative ion mode.


Assuntos
Técnicas de Química Analítica/métodos , Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Metais/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Íons/química , Isomerismo
2.
Carbohydr Res ; 357: 147-50, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22677518

RESUMO

ß-Configured peracetylated sugars are often used as easily accessible glycosyl donors that are typically activated with common Lewis acids such as boron trifluoride or trimethylsilyltrifluoromethane sulfonate. Often these glycosylations occur with unsatisfactory yields due to incomplete reactions or extensive byproduct formation, primarily as a result of loss of an additional acetyl group generating partially unprotected glycosides. Here we report a simple glycosylation-reacetylation protocol for the generation of predominantly ß-configured peracetylated allyl glucoside, -galactoside, -lactoside, and -maltoside with substantially improved reaction yields.


Assuntos
Acetatos/química , Glicosídeos/síntese química , Acetilação , Configuração de Carboidratos , Glicosídeos/química , Glicosilação , Ácidos de Lewis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA