Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
PLoS One ; 19(5): e0303101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739642

RESUMO

This research study aims to understand the application of Artificial Neural Networks (ANNs) to forecast the Self-Compacting Recycled Coarse Aggregate Concrete (SCRCAC) compressive strength. From different literature, 602 available data sets from SCRCAC mix designs are collected, and the data are rearranged, reconstructed, trained and tested for the ANN model development. The models were established using seven input variables: the mass of cementitious content, water, natural coarse aggregate content, natural fine aggregate content, recycled coarse aggregate content, chemical admixture and mineral admixture used in the SCRCAC mix designs. Two normalization techniques are used for data normalization to visualize the data distribution. For each normalization technique, three transfer functions are used for modelling. In total, six different types of models were run in MATLAB and used to estimate the 28th day SCRCAC compressive strength. Normalization technique 2 performs better than 1 and TANSING is the best transfer function. The best k-fold cross-validation fold is k = 7. The coefficient of determination for predicted and actual compressive strength is 0.78 for training and 0.86 for testing. The impact of the number of neurons and layers on the model was performed. Inputs from standards are used to forecast the 28th day compressive strength. Apart from ANN, Machine Learning (ML) techniques like random forest, extra trees, extreme boosting and light gradient boosting techniques are adopted to predict the 28th day compressive strength of SCRCAC. Compared to ML, ANN prediction shows better results in terms of sensitive analysis. The study also extended to determine 28th day compressive strength from experimental work and compared it with 28th day compressive strength from ANN best model. Standard and ANN mix designs have similar fresh and hardened properties. The average compressive strength from ANN model and experimental results are 39.067 and 38.36 MPa, respectively with correlation coefficient is 1. It appears that ANN can validly predict the compressive strength of concrete.


Assuntos
Força Compressiva , Materiais de Construção , Aprendizado de Máquina , Redes Neurais de Computação , Materiais de Construção/análise , Reciclagem
3.
Sci Rep ; 14(1): 8910, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632259

RESUMO

Landfill leachate forms when waste-inherent water and percolated rainfall transfer are highly toxic, corrosive, acidic, and full of environmental pollutants. The release of leachate from municipal solid waste (MSW) landfill sites poses a severe hazard to human health and aquatic life. This study examined the impact of leachate from Delhi's Ghazipur landfill on the nearby groundwater quality. Analysis of leachate samples was done to determine various parameters such as total dissolved solids (TDS), hardness, alkalinity, electrical conductivity, pH, BOD5, COD, nitrate, sulphate, chloride and iron, and presence of coliform bacteria. Significant dissolved elements (22,690-34,525 mg/L) were observed in the samples, indicated by the high conductivity value (1156-1405 mho/cm). However, a stable pH range (6.90-7.80) of leachate samples was observed due to high alkalinity concentrations between 2123 and 3256 mg/L. The inverse distance weighing (IDW) interpolation tool from QGIS 3.22.7 developed spatial interpolated models for each parameter across the Ghazipur area. The IDW interpolated graphs of various parameters over the whole study area confirmed these contaminations. In addition, leachate and groundwater samples were physio-chemically analyzed, and temporal fluctuation in landfill waste has also been studied. The temporal fluctuation results showed that when heat is produced, transmitted, and lost throughout the waste system, the maximum temperature position fluctuates over time. The findings of this study highlight the critical importance of landfill management in reducing groundwater contamination from MSW leachate.

5.
Am J Hematol ; 99(6): 1172-1174, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436141

RESUMO

Probability of treatment-free remission (TFR) in CML patients with additional chromosomal abnormalities (ACA) in the Philadelphia-positive clone or variant Philadelphia translocations (ACA/Var-Ph group, blue panel), in those with no cytogenetic abnormality other than the classical Philadelphia translocation (c-Ph group, green panel) and in the subgroups of CML patients with high-risk ACA (HR-ACA, yellow panel) and Var-Ph (red panel).


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Cromossomo Filadélfia , Indução de Remissão , Translocação Genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Aberrações Cromossômicas , Idoso , Adolescente
6.
Leukemia ; 38(4): 796-802, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424138

RESUMO

Second-generation tyrosine kinase inhibitors (2GTKI) are more effective in inducing rapid molecular responses than imatinib when used first-line in patients with chronic myeloid leukemia in chronic phase (CML-CP). However, failure of first line-2GTKI (1L-2GTKI) still occurs and there is no consensus regarding subsequent management. We retrospectively analyzed the outcome of 106 CML-CP patients treated with 1L-2GTKI and with a median follow-up of 91 months. 45 patients (42.4%) switched to an alternative TKI, 28 for intolerance (26.4%) and 17 (16%) for resistance. Most patients who remained on 1L-2GTKI achieved deep molecular responses (DMR) and 15 (14.1%) are in treatment-free remission (TFR). Intolerant patients also obtained DMR, although most required multiple TKI changes and were slower to respond, particularly if treated with 2L-imatinib. Inferior outcomes were observed in resistant patients, who failed alternative 2L-2GTKI and required 3/4GTKI and/or allogeneic hematopoietic stem cell transplant (alloSCT). 7yr-OS was significantly lower for these individuals (66.1%) than for intolerant patients and those who remained on 1L-2GTKI (100% and 97.9%, respectively; p = 0.001). It is apparent that failure of 1L-2GTKI is a challenging problem in modern CML therapy. Intolerance can be effectively managed by switching to an alternative 2GTKI, but resistance requires early consideration of 3/4GTKI.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/uso terapêutico , Dasatinibe , Inibidores de Proteínas Quinases/efeitos adversos , Estudos Retrospectivos , Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico
7.
PLoS One ; 19(2): e0298042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38346047

RESUMO

Metastatic dissemination following successful treatment of the primary tumour remains a common cause of death. There is mounting evidence that therapeutic interventions themselves may promote development of metastatic disease. We earlier reported that cell-free chromatin particles (cfChPs) released from dying cancer cells are potentially oncogenic. Based on this observation we hypothesized that therapeutic interventions may lead to the release of cfChPs from therapy induced dying cancer cells which could be carried via the blood stream to distant organs to transform healthy cells into new cancers that would masquerade as metastasis. To test this hypothesis, we generated xenografts of MDA-MB-231 human breast cancer cells in severe combined immune-deficient mice, and using immuno-fluorescence and FISH analysis looked for cfChPs in their brain cells. We detected multiple human DNA signals representing cfChPs in nuclei of brain cells of mice which co-localized with eight human onco-proteins. No intact MDA-MB-231 cells were detected. The number of co-localizing human DNA and human c-Myc signals increased dramatically following treatment with chemotherapy, localized radiotherapy or surgery, which could be prevented by concurrent treatment with three different cfChPs deactivating agents. These results suggest that therapeutic interventions lead to the release cfChPs from therapy induced dying cancer cells carrying oncogenes and are transported via the blood stream to brain cells to potentially transform them to generate new cancers that would appear as metastases. cfChPs induced metastatic spread of cancer is preventable by concurrent treatment with agents that deactivate cfChPs.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , Xenoenxertos , Linhagem Celular Tumoral , Oncogenes , DNA
8.
Sci Rep ; 14(1): 4914, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418505

RESUMO

This study examines the effect of Ground Granulated Blast Furnace Slag (GGBS) and steel fibers on the flexural behaviour of RC beams under monotonic loading. Various percentages of GGBS were used to substitute cement, namely 0%, 20%, 40%, 60%, and 80% and fibers were added to the concrete mix as 0%, 0.5%, 1%, and 1.5% of the volume of concrete. The load-deflection behaviour of GGBS-incorporated RC beams with fibers was compared with the control RC beam. Beams were tested under load control for 28 days and 180 days. The ultimate load of the GGBS-incorporated RC beam up to 40% cement replacement was found to higher than that of the control beam. The strength of concrete is reduced by 28% and 19% when cement was partially replaced by 80% of GGBS at 28 and 180 days, respectively, compared to control concrete without fibres. Further, the analytical load-deflection response of GGBS-incorporated RC beams was determined by using several codes of practice, namely, ACI 318-11(2011), CSA A23.3-04 (2004), EC-04 (2004), and IS 456 (2000). The Codal provisions were primarily based on the effective moment of inertia, Young's modulus, and modulus of rupture, stiffness, and cracking. Average load-deflection plots obtained from experiments were compared with the computed load-deflection of analytical studies. It was found that the analytically predicted load-deflection behaviour is comparable with the corresponding average experimental load-deflection response. Moment curvature relations were also developed for RC beams.

9.
Sci Rep ; 14(1): 4824, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413667

RESUMO

This study, centered on the Asan Wetland in Uttarakhand, examines the ecological impact of heavy metals on aquatic insects biodiversity. It highlights the detrimental effects of metals like chromium, mercury, and lead, stemming from natural and anthropogenic sources, on aquatic insects diversity. Aquatic insects, particularly sensitive to water quality, are emphasized as key indicators of environmental health, illustrating the importance of understanding and managing the influences on wetland ecosystems. Wetland ecosystems are vulnerable to various environmental stressors, including pollution from heavy metals. These toxic substances can alter water quality parameters, disrupt nutrient cycling, and negatively impact the biodiversity and ecological balance of the system. This study aimed to evaluate the impact of several heavy metals (namely Cd, As, Cu, Fe, Pb, Ni, Zn, Al, Cr) on the distribution and biodiversity of various aquatic insect species, including Coeleoptera, Diptera, Ephemeroptera, Odonata, Plecoptera, and Trichoptera. The research utilized data collected between November 2021 and October 2022 from specifically chosen sites (S1, S2, S3) within the Asan Wetland in Dehradun, Uttarakhand. After collecting and identifying samples, various statistical (Sorenson, Shannon-Weiner diversity index, Margelef index) and multivariate tests (CCA, PCA, One-way Anova), have been applied to show the effects of these parameters. This study offers significant findings regarding the distribution patterns of heavy metals, the abundance of aquatic insects, and their interconnectedness within the ecosystem of the Asan Wetland. The abundance of aquatic insects, represented by 13 genera belonging to 6 orders, was assessed at three different sites (S1, S2, and S3) within the wetland. It was concluded that the heavy metals concentration and aquatic insects' density increases and decreases vice-versa in monsoon and winter seasons might be due to unfavourable factors. These findings contribute to the understanding of ecological dynamics and potential impacts of heavy metals on aquatic biota in wetland environments.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Áreas Alagadas , Ecossistema , Monitoramento Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Insetos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Medição de Risco , China , Sedimentos Geológicos
10.
Nanotechnology ; 35(19)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38295411

RESUMO

The field-effect transistor (FET) is a fundamental component of semiconductors and the electronic industry. High on-current and mobility with layer-dependent features are required for outstanding FET channel material. Two-dimensional materials are advantageous over bulk materials owing to their higher mobility, high ON/OFF ratio, low tunneling current, and leakage problems. Moreover, two-dimensional heterostructures provide a better way to tune electrical properties. In this work, the two distinct possibilities of PdSe2/MoSe2heterostructure have been employed through mechanical exfoliation and analyzed their electrical response. These diffe approaches to heterostructure formation serve as crucial components of our investigation, allowing us to explore and evaluate the unique electronic properties arising from each design. This work demonstrates that the heterostructure possesses a better ON/OFF ratio of ∼5.78 × 105, essential in switching characteristics. Moreover, MoSe2provides a defect-free interface to PdSe2, resulting in a higher ON current of ∼10µA and mobility of ∼63.7 cm2V-1s-1, necessary for transistor applications. In addition, comprehending the process of charge transfer occurring at the interface between transition metal dichalcogenides is fundamental for advancing next-generation technologies. This work provides insights into the interface formed between the PdSe2and MoSe2that can be harnessed in transistor applications.

11.
Environ Sci Pollut Res Int ; 31(12): 17835-17857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36988800

RESUMO

Food waste has been identified as one of the major factors that constitute numerous anthropogenic activities, especially in developing countries. There is a growing problem with food waste that affects every part of the waste management system, from collection to disposal; finding long-term solutions necessitates involving all participants in the food supply chain, from farmers and manufacturers to distributors and consumers. In addition to food waste management, maintaining food sustainability and security globally is crucial so that every individual, household, and nation can always get food. "End hunger, achieve food security and enhanced nutrition, and promote sustainable agriculture" are among the main challenges of global sustainable development (SDG) goal 2. Therefore, sustainable food waste management technology is needed. Recent attention has been focused on global food loss and waste. One-third of food produced for human use is wasted every year. Source reduction (i.e., limiting food losses and waste) and contemporary treatment technologies appear to be the most promising strategy for converting food waste into safe, nutritious, value-added feed products and achieving sustainability. Food waste is also employed in industrial processes for the production of biofuels or biopolymers. Biofuels mitigate the detrimental effects of fossil fuels. Identifying crop-producing zones, bioenergy cultivars, and management practices will enhance the natural environment and sustainable biochemical process. Traditional food waste reduction strategies are ineffective in lowering GHG emissions and food waste treatment. The main contribution of this study is an inventory of the theoretical and practical methods of prevention and minimization of food waste and losses. It identifies the trade-offs for food safety, sustainability, and security. Moreover, it investigates the impact of COVID-19 on food waste behavior.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Alimentos , Eliminação de Resíduos/métodos , Biocombustíveis , Gerenciamento de Resíduos/métodos , Conservação dos Recursos Naturais , Segurança Alimentar
12.
Environ Res ; 244: 117939, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128604

RESUMO

The Guerouaou aquifer investigation spanning 280 km2 in Ain Zohra yields promising outcomes, instilling optimism for regional water quality. These analyses were applied to 45 sampling instances from 43 wells, enabling a comprehensive water quality assessment. Groundwater conductivity ranged from medium to high, peaking at 18360 ms/cm2. The conductivity reveals insights about the groundwater's mineralization. Key physiochemical parameters fell within desirable thresholds, bolstering the positive perspective. HCO3- levels spanned 82-420 mg/L, while chloride content ranged from 38 to 5316 mg/L, benefiting water quality. NO3- ions, vital for gauging pollution, ranged from 0 to 260 mg/L, indicating favorable results. Cation concentrations exhibited encouraging variations: Ca2+- 24 to 647 mg/L, Mg2+- 12 to 440 mg/L, Na+- 18 to 2722 mg/L, K+- 1.75 to 28.65 mg/L. These collectively favor water quality. Halite breakdown dominated mineralization, as evidenced by the prevalence of Na-Cl-Na-SO4 facies. Water resource management and local communities need effective management and mitigation strategies to prevent saltwater intrusion.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Marrocos , Poluentes Químicos da Água/análise , Salinidade , Água Subterrânea/análise , Qualidade da Água
13.
RSC Adv ; 13(51): 35992, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090102

RESUMO

Expression of concern for 'Influence of chemical composition on the amount of second phases precipitates and transformation temperatures of TiNiPdCu shape memory alloys prepared through novel powder metallurgy route' by Abid Hussain et al., RSC Adv., 2023, 13, 29376-29392, https://doi.org/10.1039/D3RA05513B.

14.
Nanotechnology ; 35(11)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38081080

RESUMO

The importance of infrared photodetectors cannot be overstated, especially in fields such as security, communication, and military. While silicon-based infrared photodetectors are widely used due to the maturity of the semiconductor industry, their band gap of 1.12 eV limits their infrared light absorption above 1100 nm, making them less effective. To overcome this limitation, we report a novel infrared photodetector prepared by growing graphene on the surface of zinc hyper-doped silicon. This technique utilizes hyper-doping to introduce deep level assisted infrared light absorption benefit from the enhanced carrier collection capacity of graphene. Without introducing new energy consumption, the hyper-doped substrate annealing treatment is completed during the growth of graphene. By the improvement of transport and collection of charge carriers, the graphene growth adjusts the band structure to upgrade electrode contact, resulting in a response of 1.6 mA W-1under laser irradiation with a wavelength of 1550 nm and a power of 2 mW. In comparison, the response of the photodetector without graphene was only 0.51 mA W-1, indicating a three-fold performance improvement. Additionally, the device has lower dark current and lower noise current, resulting in a noise equivalent power of 7.6 × 10-8W Hz-0.5. Thus, the combination of transition metal hyper-doping and graphene growth technology has enormous potential for developing the next generation of infrared photodetectors.

15.
Chemosphere ; 344: 140264, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758081

RESUMO

Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Humanos , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Águas Residuárias
16.
Materials (Basel) ; 16(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37763609

RESUMO

Durable concrete significantly reduces the spalling caused by chemical damage. The objective of current research is to substitute cement with supplementary such as fly ash (FA), ground granulated blast furnace slag (GGBS), and alccofine (AF). Additionally, the impact of nano-silica (NS) and silica fumes (SF) on the GPC durability when cured at various temperatures has been attempted. In order to perform this, GPC samples were produced by combining NS and SF at proportions of 0.5% NS + 5% SF, 1% NS + 10% SF, and 1.5% NS + 15% SF, and then cured at temperatures of 27 °C, 60 °C, 90 °C, and 120 °C, respectively. In this research, all concrete specimens were continuously immersed for twelve weeks under four different chemicals, i.e., HCl (2%), H2SO4 (2%), NaCl (6%), and Na2SO4 (6%). The influence of chemical attack on the qualities of concrete was examined by evaluating the water absorption, sorptivity, loss of mass, and loss of GPC strength. The durability aspect is also studied by visual appearance and mass loss under harmful chemical attack. The combination of GPC with integrated NS and SF affords great resistance against chemical attacks. The percentages of these two components are 1.5% and 15%. For GPC specimens, when cured at 90 °C, the resultant strength is found at its maximum.

17.
Chemosphere ; 339: 139647, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37516325

RESUMO

Hospital wastewater has emerged as a major category of environmental pollutants over the past two decades, but its prevalence in freshwater is less well documented than other types of contaminants. Due to compound complexity and improper operations, conventional treatment is unable to remove pharmaceuticals from hospital wastewater. Advanced treatment technologies may eliminate pharmaceuticals, but there are still concerns about cost and energy use. There should be a legal and regulatory framework in place to control the flow of hospital wastewater. Here, we review the latest scientific knowledge regarding effective pharmaceutical cleanup strategies and treatment procedures to achieve that goal. Successful treatment techniques are also highlighted, such as pre-treatment or on-site facilities that control hospital wastewater where it is used in hospitals. Due to the prioritization, the regulatory agencies will be able to assess and monitor the concentration of pharmaceutical residues in groundwater, surface water, and drinking water. Based on the data obtained, the conventional WWTPs remove 10-60% of pharmaceutical residues. However, most PhACs are eliminated during the secondary or advanced therapy stages, and an overall elimination rate higher than 90% can be achieved. This review also highlights and compares the suitability of currently used treatment technologies and identifies the merits and demerits of each technology to upgrade the system to tackle future challenges. For this reason, pharmaceutical compound rankings in regulatory agencies should be the subject of prospective studies.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Monitoramento Ambiental , Ecossistema , Estudos Prospectivos , Poluentes Químicos da Água/análise , Resistência Microbiana a Medicamentos , Preparações Farmacêuticas
18.
RSC Adv ; 13(30): 21008-21020, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37441046

RESUMO

Araldite LY5052 epoxy resin and Aradur HY5052 hardener were used in a ratio of 100 : 38 to produce composite coatings containing 0.05 proportion of functionalized SiO2. Coating samples were cured at curing temperatures of 60, 80, 100, 120, and 140 °C. The results of Fourier Transform Infrared Spectroscopy (FTIR) verified that silica particles were successfully functionalized with methyltrimethoxysilane (MTMS)/3-aminopropyl-triethoxysilane (APTES). The epoxide and Si-O bond peaks in the EHS100 coating were present due to the effective incorporation of functionalized silica (FSiO2) particles in the polymeric matrix (epoxy resin). The surface morphology of the bare aluminium alloy AA7075 and EHS100 coating was investigated by Field Emission Scanning Electron Microscopy (FE-SEM). Additionally, corrosion analysis was conducted at room temperature using an electrolytic solution of artificial seawater, prepared according to ASTM standard D1141-98. Charge transfer resistance (Rct) was shown to increase by 86.43, 92.15, 94.76, 90.65, and 83.96% for EHS60, EHS80, EHS100, EHS120, and EHS140 in comparison to bare AA7075 substrate using electrochemical impedance spectroscopy (EIS) examination. Furthermore, potentiodynamic polarization (PDP) measurements were carried out to determine the corrosion rates, which demonstrated a drop of 55.98, 98.96, 99.37, 98.33, and 50.39% for EHS60, EHS80, EHS100, EHS120, and EHS140, as compared to the bare AA7075 sample. The highest charge transfer resistance (29.77 kΩ) and lowest corrosion rate (0.00078 mm per year) were recorded for EHS100, which reveals that the EHS100 coating has the best anti-corrosion performance and provides the maximum corrosion protection for the aluminium alloy AA7075 substrate.

19.
Heliyon ; 9(7): e17601, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37456028

RESUMO

Glioblastoma multiforme (GBM) is the most common and primary brain tumor with poor prognosis. They are removed by following tedious and life threatening surgeries. GBM stem cells (GSCs) are the main source of tumor recurrence after surgery. Hence, drugs are designed to overcome the recurrent glioblastoma malignant cells. Currently used chemotherapies are not cost effective as well as bear resistance. New and effective chemotherapeutic compounds are developed to overcome the intrinsic and acquired resistance. Dicoumarol derivative 3,3'-[(4-methoxyphenyl)methanediyl]bis(4-hydroxy-2Hchromen-2-one) (HL) and its triethylammonium salt triethylammonium3-[(4-methoxyphenyl)(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]-2-oxo-2H-chromen-4-olate (L) were synthesized and characterized using spectral and analytical techniques. The deprotonated compound L was further studied structurally using single crystal analysis. Cytotoxic studies against human glioblastoma cells A172 and LN229 were investigated both dose and time dependently and compared with the cytotoxicity of normal human astrocytes (NHA). The IC50 value of HL against A172 was found to be lying within the range 2.68-0.95 µM whereas against LN229 the range was found to be 9.55-0.85 µM. Similarly, the compound L revealed range of 1.9-0.271 µM against A172 and 1.2-0.27 µM against LN229. Cell cycle arrest was observed in GBM cells treated with L compared to the control group, which suggested that L may trigger apoptosis in GBM cells according to cytotoxicity and flow cytometry results. The antioxidant activity of synthesized compounds was also investigated using DPPH free radicals.

20.
J Environ Manage ; 342: 118331, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37315466

RESUMO

Implementing unified municipal solid waste management (MSWM) is often difficult due to socio-economic variables. However, spatial GIS models and statistical analysis of solid waste characterized by the weekdays, weekends, and festivals can somewhat mitigate the variance and assist with selecting suitable waste management methods. This paper presents the example of Rajouri, India, to propose a suitable MSWM based on Inverse Distance Weighted (IDW) intensity maps and statistical findings. The considered region was divided into different sample sites based on the local population density, and Municipal Solid Waste (MSW) was collected from four locations in each site on weekdays, weekends, and festivals. Compositional analysis of the MSW was then used to generate spatial IDW models in QGIS 3.22.7 to interpolate MSW generation over the entire area. Finally, statistical analysis was conducted to gain insight into the waste generation and accumulation trends. The results show that Rajouri produces 245 tonnes of waste daily (per capita: 0.382 kg/day) with a large organic fraction compared to other waste categories. Besides, waste generation is observed to increase over weekends and festivals due to increased consumption of material goods. Composting could serve as a vector for municipal solid waste because of its increased organic component and cost constraints. However, further research on the potential segregation techniques for the organic fraction of solid waste is needed.


Assuntos
Compostagem , Eliminação de Resíduos , Gerenciamento de Resíduos , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos , Índia , Cidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...