Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2310044121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446857

RESUMO

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.


Assuntos
Artérias , Benchmarking , Perfusão , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética
2.
Neuroimage Clin ; 41: 103577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38377722

RESUMO

Degeneration in the substantia nigra (SN) pars compacta (SNc) underlies motor symptoms in Parkinson's disease (PD). Currently, there are no neuroimaging biomarkers that are sufficiently sensitive, specific, reproducible, and accessible for routine diagnosis or staging of PD. Although iron is essential for cellular processes, it also mediates neurodegeneration. MRI can localize and quantify brain iron using magnetic susceptibility, which could potentially provide biomarkers of PD. We measured iron in the SNc, SN pars reticulata (SNr), total SN, and ventral tegmental area (VTA), using quantitative susceptibility mapping (QSM) and R2* relaxometry, in PD patients and age-matched healthy controls (HCs). PD patients, diagnosed within five years of participation and HCs were scanned at 3T (22 PD and 23 HCs) and 7T (17 PD and 21 HCs) MRI. Midbrain nuclei were segmented using a probabilistic subcortical atlas. QSM and R2* values were measured in midbrain subregions. For each measure, groups were contrasted, with Age and Sex as covariates, and receiver operating characteristic (ROC) curve analyses were performed with repeated k-fold cross-validation to test the potential of our measures to classify PD patients and HCs. Statistical differences of area under the curves (AUCs) were compared using the Hanley-MacNeil method (QSM versus R2*; 3T versus 7T MRI). PD patients had higher QSM values in the SNc at both 3T (padj = 0.001) and 7T (padj = 0.01), but not in SNr, total SN, or VTA, at either field strength. No significant group differences were revealed using R2* in any midbrain region at 3T, though increased R2* values in SNc at 7T MRI were marginally significant in PDs compared to HCs (padj = 0.052). ROC curve analyses showed that SNc iron measured with QSM, distinguished early PD patients from HCs at the single-subject level with good diagnostic accuracy, using 3T (mean AUC = 0.83, 95 % CI = 0.82-0.84) and 7T (mean AUC = 0.80, 95 % CI = 0.79-0.81) MRI. Mean AUCs reported here are from averages of tests in the hold-out fold of cross-validated samples. The Hanley-MacNeil method demonstrated that QSM outperforms R2* in discriminating PD patients from HCs at 3T, but not 7T. There were no significant differences between 3T and 7T in diagnostic accuracy of QSM values in SNc. This study highlights the importance of segmenting midbrain subregions, performed here using a standardized atlas, and demonstrates high accuracy of SNc iron measured with QSM at 3T MRI in identifying early PD patients. QSM measures of SNc show potential for inclusion in neuroimaging diagnostic biomarkers of early PD. An MRI diagnostic biomarker of PD would represent a significant clinical advance.


Assuntos
Doença de Parkinson , Parte Compacta da Substância Negra , Humanos , Parte Compacta da Substância Negra/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ferro , Biomarcadores
3.
J Orthop Res ; 42(6): 1292-1302, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38235918

RESUMO

Production of metal debris from implant wear and corrosion processes is now a well understood occurrence following hip arthroplasty. Evidence has shown that metal ions can enter the bloodstream and travel to distant organs including the brain, and in extreme cases, can induce sensorial and neurological diseases. Our objective was tosimultaneously analyze brain anatomy and physiology in patients with long-term and well-functioning implants. Included were subjects who had received total hip or hip resurfacing arthroplastywith an implantation time of a minimum of 7 years (n = 28) and age- and sex-matched controls (n = 32). Blood samples were obtained to measure ion concentrations of cobalt and chromium, and the Montreal Cognitive Assessment was performed. 3T MRI brain scans were completed with an MPRAGE sequence for ROI segmentation and multiecho gradient echo sequences to generate QSM and R2* maps. Mean QSM and R2* values were recorded for five deep brain and four middle and cortical brain structures on both hemispheres: pallidum, putamen, caudate, amygdala, hippocampus, anterior cingulate, inferior temporal, and cerebellum. No differences in QSM or R2* or cognition scores were found between both groups (p > 0.6654). No correlation was found between susceptibility and blood ion levels for cobalt or chromium in any region of the brain. No correlation was found between blood ion levels and cognition scores. Clinical significance: Results suggest that metal ions released by long-term and well-functioning implants do not affect brain integrity.


Assuntos
Artroplastia de Quadril , Encéfalo , Cromo , Cobalto , Prótese de Quadril , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Idoso , Cromo/sangue , Cobalto/sangue , Adulto , Estudos de Casos e Controles
4.
Sci Rep ; 14(1): 1985, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263439

RESUMO

The availability of target cells expressing the HIV receptors CD4 and CCR5 in genital tissue is a critical determinant of HIV susceptibility during sexual transmission. Quantification of immune cells in genital tissue is therefore an important outcome for studies on HIV susceptibility and prevention. Immunofluorescence microscopy allows for precise visualization of immune cells in mucosal tissues; however, this technique is limited in clinical studies by the lack of an accurate, unbiased, high-throughput image analysis method. Current pixel-based thresholding methods for cell counting struggle in tissue regions with high cell density and autofluorescence, both of which are common features in genital tissue. We describe a deep-learning approach using the publicly available StarDist method to count cells in immunofluorescence microscopy images of foreskin stained for nuclei, CD3, CD4, and CCR5. The accuracy of the model was comparable to manual counting (gold standard) and surpassed the capability of a previously described pixel-based cell counting method. We show that the performance of our deep-learning model is robust in tissue regions with high cell density and high autofluorescence. Moreover, we show that this deep-learning analysis method is both easy to implement and to adapt for the identification of other cell types in genital mucosal tissue.


Assuntos
Aprendizado Profundo , Infecções por HIV , Humanos , Masculino , Contagem de Células , Núcleo Celular , Prepúcio do Pênis
5.
bioRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37292595

RESUMO

The cholinergic innervation of the cortex originates almost entirely from populations of neurons in the basal forebrain (BF). Structurally, the ascending BF cholinergic projections are highly branched, with individual cells targeting multiple different cortical regions. However, it is not known whether the structural organization of basal forebrain projections reflects their functional integration with the cortex. We therefore used high-resolution 7T diffusion and resting state functional MRI in humans to examine multimodal gradients of BF cholinergic connectivity with the cortex. Moving from anteromedial to posterolateral BF, we observed reduced tethering between structural and functional connectivity gradients, with the most pronounced dissimilarity localized in the nucleus basalis of Meynert (NbM). The cortical expression of this structure-function gradient revealed progressively weaker tethering moving from unimodal to transmodal cortex, with the lowest tethering in midcingulo-insular cortex. We used human [18F] fluoroethoxy-benzovesamicol (FEOBV) PET to demonstrate that cortical areas with higher concentrations of cholinergic innervation tend to exhibit lower tethering between BF structural and functional connectivity, suggesting a pattern of increasingly diffuse axonal arborization. Optogenetic tracing of cholinergic projections and [18F] FEOBV PET in mice confirmed a gradient of axonal arborization across individual BF cholinergic neurons. Like humans, cholinergic neurons with the highest arborization project to cingulo-insular areas of the mouse isocortex. Altogether, our findings reveal that BF cholinergic neurons vary in their branch complexity, with certain subpopulations exhibiting greater modularity and others greater diffusivity in the functional integration of their cortical targets.

6.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37333315

RESUMO

Diffusion MRI (dMRI) is an imaging technique widely used in neuroimaging research, where the signal carries directional information of underlying neuronal fibres based on the diffusivity of water molecules. One of the shortcomings of dMRI is that numerous images, sampled at gradient directions on a sphere, must be acquired to achieve a reliable angular resolution for model-fitting, which translates to longer scan times, higher costs, and barriers to clinical adoption. In this work we introduce gauge equivariant convolutional neural network (gCNN) layers for dMRI that overcome the challenges associated with the signal being acquired on a sphere with antipodal points identified. This is done by noting that the domain is equivalent to the real projective plane, ℝ P 2 , which is a non-euclidean and a non-orientable manifold. This is in stark contrast to a rectangular grid which typical convolutional neural networks (CNNs) are designed for. We apply our method to upsample angular resolution for predicting diffusion tensor imaging (DTI) parameters from just six diffusion gradient directions. The symmetries introduced allow gCNNs the ability to train with fewer subjects as compared to a baseline model that involves only 3D convolutions.

7.
J Neurochem ; 168(4): 397-413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37864501

RESUMO

The basal forebrain cholinergic neurons provide acetylcholine to the cortex via large projections. Recent molecular imaging work in humans indicates that the cortical cholinergic innervation is not uniformly distributed, but rather may disproportionately innervate cortical areas relevant to supervisory attention. In this study, we therefore reexamined the spatial relationship between acetylcholinergic modulation and attention in the human cortex using meta-analytic strategies targeting both pharmacological and non-pharmacological neuroimaging studies. We found that pharmaco-modulation of acetylcholine evoked both increased activity in the anterior cingulate and decreased activity in the opercular and insular cortex. In large independent meta-analyses of non-pharmacological neuroimaging research, we demonstrate that during attentional engagement these cortical areas exhibit (1) task-related co-activation with the basal forebrain, (2) task-related co-activation with one another, and (3) spatial overlap with dense cholinergic innervations originating from the basal forebrain, as estimated by multimodal positron emission tomography and magnetic resonance imaging. Finally, we provide meta-analytic evidence that pharmaco-modulation of acetylcholine also induces a speeding of responses to targets with no apparent tradeoff in accuracy. In sum, we demonstrate in humans that acetylcholinergic modulation of midcingulo-insular hubs of the ventral attention/salience network via basal forebrain afferents may coordinate selection of task relevant information, thereby facilitating cognition and behavior.


Assuntos
Acetilcolina , Atenção , Humanos , Cognição/fisiologia , Neuroimagem , Colinérgicos/farmacologia
8.
Elife ; 122023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37956092

RESUMO

The hippocampus is an archicortical structure, consisting of subfields with unique circuits. Understanding its microstructure, as proxied by these subfields, can improve our mechanistic understanding of learning and memory and has clinical potential for several neurological disorders. One prominent issue is how to parcellate, register, or retrieve homologous points between two hippocampi with grossly different morphologies. Here, we present a surface-based registration method that solves this issue in a contrast-agnostic, topology-preserving manner. Specifically, the entire hippocampus is first analytically unfolded, and then samples are registered in 2D unfolded space based on thickness, curvature, and gyrification. We demonstrate this method in seven 3D histology samples and show superior alignment with respect to subfields using this method over more conventional registration approaches.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Lobo Temporal , Técnicas Histológicas
9.
Neuroimage Clin ; 40: 103519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37797434

RESUMO

The loss of dopamine in the striatum underlies motor symptoms of Parkinson's disease (PD). Rapid eye movement sleep behaviour disorder (RBD) is considered prodromal PD and has shown similar neural changes in the striatum. Alterations in brain iron suggest neurodegeneration; however, the literature on striatal iron has been inconsistent in PD and scant in RBD. Toward clarifying pathophysiological changes in PD and RBD, and uncovering possible biomarkers, we imaged 26 early-stage PD patients, 16 RBD patients, and 39 age-matched healthy controls with 3 T MRI. We compared mean susceptibility using quantitative susceptibility mapping (QSM) in the standard striatum (caudate, putamen, and nucleus accumbens) and tractography-parcellated striatum. Diffusion MRI permitted parcellation of the striatum into seven subregions based on the cortical areas of maximal connectivity from the Tziortzi atlas. No significant differences in mean susceptibility were found in the standard striatum anatomy. For the parcellated striatum, the caudal motor subregion, the most affected region in PD, showed lower iron levels compared to healthy controls. Receiver operating characteristic curves using mean susceptibility in the caudal motor striatum showed a good diagnostic accuracy of 0.80 when classifying early-stage PD from healthy controls. This study highlights that tractography-based parcellation of the striatum could enhance sensitivity to changes in iron levels, which have not been consistent in the PD literature. The decreased caudal motor striatum iron was sufficiently sensitive to PD, but not RBD. QSM in the striatum could contribute to development of a multivariate or multimodal biomarker of early-stage PD, but further work in larger datasets is needed to confirm its utility in prodromal groups.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Ferro , Corpo Estriado/diagnóstico por imagem , Encéfalo
10.
Data Brief ; 50: 109513, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37663773

RESUMO

Population-averaged brain atlases, that are represented in a standard space with anatomical labels, are instrumental tools in neurosurgical planning and the study of neurodegenerative conditions. Traditional brain atlases are primarily derived from anatomical scans and contain limited information regarding the axonal organization of the white matter. With the advance of diffusion MRI that allows the modeling of fiber orientation distribution (FOD) in the brain tissue, there is an increasing interest for a population-averaged FOD template, especially based on a large healthy aging cohort, to offer structural connectivity information for connectomic surgery and analysis of neurodegeneration. The dataset described in this article contains a set of multi-contrast structural connectomic MRI atlases, including T1w, T2w, and FOD templates, along with the associated whole brain tractograms. The templates were made using multi-contrast group-wise registration based on 3T MRIs of 422 Human Connectome Project in Aging (HCP-A) subjects. To enhance the usability, probabilistic tissue maps and segmentation of 22 subcortical structures are provided. Finally, the subthalamic nucleus shown in the atlas is parcellated into sensorimotor, limbic, and associative sub-regions based on their structural connectivity to facilitate the analysis and planning of deep brain stimulation procedures. The dataset is available on the OSF Repository: https://osf.io/p7syt.

11.
Hum Brain Mapp ; 44(16): 5485-5503, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615057

RESUMO

The hippocampus is classically divided into mesoscopic subfields which contain varying microstructure that contribute to their unique functional roles. It has been challenging to characterize this microstructure with current magnetic resonance based neuroimaging techniques. In this work, we used diffusion magnetic resonance imaging (dMRI) and a novel surface-based approach in the hippocampus which revealed distinct microstructural distributions of neurite density and dispersion, T1w/T2w ratio as a proxy for myelin content, fractional anisotropy, and mean diffusivity. We used the neurite orientation dispersion and density imaging (NODDI) model optimized for grey matter diffusivity to characterize neurite density and dispersion. We found that neurite dispersion was highest in the cornu ammonis (CA) 1 and subiculum subfields which likely captures the large heterogeneity of tangential and radial fibres, such as the Schaffer collaterals, perforant path, and pyramidal neurons. Neurite density and T1w/T2w were highest in the subiculum and CA3 and lowest in CA1, which may reflect known myeloarchitectonic differences between these subfields. Using a simple logistic regression model, we showed that neurite density, dispersion, and T1w/T2w measures were separable across the subfields, suggesting that they may be sensitive to the known variability in subfield cyto- and myeloarchitecture. We report macrostructural measures of gyrification, thickness, and curvature that were in line with ex vivo descriptions of hippocampal anatomy. We employed a multivariate orthogonal projective non-negative matrix factorization (OPNNMF) approach to capture co-varying regions of macro- and microstructure across the hippocampus. The clusters were highly variable along the medial-lateral (proximal-distal) direction, likely reflecting known differences in morphology, cytoarchitectonic profiles, and connectivity. Finally, we show that by examining the main direction of diffusion relative to canonical hippocampal axes, we could identify regions with stereotyped microstructural orientations that may map onto specific fibre pathways, such as the Schaffer collaterals, perforant path, fimbria, and alveus. These results highlight the value of combining in vivo dMRI with computational approaches for capturing hippocampal microstructure, which may provide useful features for understanding cognition and for diagnosis of disease states.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Neuroimagem/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Substância Cinzenta , Neuritos/patologia , Substância Branca/patologia
12.
bioRxiv ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37503042

RESUMO

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 Tesla arterial spin labelling data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and detectable even within five minutes and just fifty perfusion-weighted images per subject. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometry properties, macrovasculature and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterising hippocampal perfusion.

13.
Sci Data ; 10(1): 449, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438367

RESUMO

Tools available for reproducible, quantitative assessment of brain correspondence have been limited. We previously validated the anatomical fiducial (AFID) placement protocol for point-based assessment of image registration with millimetric (mm) accuracy. In this data descriptor, we release curated AFID placements for some of the most commonly used structural magnetic resonance imaging datasets and templates. The release of our accurate placements allows for rapid quality control of image registration, teaching neuroanatomy, and clinical applications such as disease diagnosis and surgical targeting. We release placements on individual subjects from four datasets (N = 132 subjects for a total of 15,232 fiducials) and 14 brain templates (4,288 fiducials), totalling more than 300 human rater hours of annotation. We also validate human rater accuracy of released placements to be within 1 - 2 mm (using more than 45,000 Euclidean distances), consistent with prior studies. Our data is compliant with the Brain Imaging Data Structure allowing for facile incorporation into neuroimaging analysis pipelines.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Humanos , Encéfalo/diagnóstico por imagem , Controle de Qualidade
14.
Sci Data ; 10(1): 189, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024500

RESUMO

We present the Canadian Open Neuroscience Platform (CONP) portal to answer the research community's need for flexible data sharing resources and provide advanced tools for search and processing infrastructure capacity. This portal differs from previous data sharing projects as it integrates datasets originating from a number of already existing platforms or databases through DataLad, a file level data integrity and access layer. The portal is also an entry point for searching and accessing a large number of standardized and containerized software and links to a computing infrastructure. It leverages community standards to help document and facilitate reuse of both datasets and tools, and already shows a growing community adoption giving access to more than 60 neuroscience datasets and over 70 tools. The CONP portal demonstrates the feasibility and offers a model of a distributed data and tool management system across 17 institutions throughout Canada.


Assuntos
Bases de Dados Factuais , Software , Canadá , Disseminação de Informação
15.
Neuroinformatics ; 21(3): 565-573, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37000360

RESUMO

Fetal functional magnetic resonance imaging (fMRI) offers critical insight into the developing brain and could aid in predicting developmental outcomes. As the fetal brain is surrounded by heterogeneous tissue, it is not possible to use adult- or child-based segmentation toolboxes. Manually-segmented masks can be used to extract the fetal brain; however, this comes at significant time costs. Here, we present a new BIDS App for masking fetal fMRI, funcmasker-flex, that overcomes these issues with a robust 3D convolutional neural network (U-net) architecture implemented in an extensible and transparent Snakemake workflow. Open-access fetal fMRI data with manual brain masks from 159 fetuses (1103 total volumes) were used for training and testing the U-net model. We also tested generalizability of the model using 82 locally acquired functional scans from 19 fetuses, which included over 2300 manually segmented volumes. Dice metrics were used to compare performance of funcmasker-flex to the ground truth manually segmented volumes, and segmentations were consistently robust (all Dice metrics ≥ 0.74). The tool is freely available and can be applied to any BIDS dataset containing fetal bold sequences. Funcmasker-flex reduces the need for manual segmentation, even when applied to novel fetal functional datasets, resulting in significant time-cost savings for performing fetal fMRI analysis.


Assuntos
Aplicativos Móveis , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
16.
Neuroimage Clin ; 38: 103367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36913907

RESUMO

Schizophrenia is believed to be a developmental disorder with one hypothesis suggesting that symptoms arise due to abnormal interactions (or disconnectivity) between different brain regions. While some major deep white matter pathways have been extensively studied (e.g. arcuate fasciculus), studies of short-ranged, "U"-shaped tracts have been limited in patients with schizophrenia, in part due to the sheer abundance of tracts present and due to the spatial variations across individuals that defy probabilistic characterization in the absence of reliable templates. In this study, we use diffusion magnetic resonance imaging (dMRI) to investigate frontal lobe superficial white matter that are present in the majority of study participants, comparing healthy controls and minimally treated patients with first-episode schizophrenia (<3 median days of lifetime treatment). Through group comparisons, 3 out of 63 frontal lobe "U"-shaped tracts were found to demonstrate localized aberrations affecting the microstructural tissue properties (via diffusion tensor metrics) in this early stage of disease. No associations were found in patients between aberrant segments of affected tracts and clinical or cognitive variables. Aberrations in the frontal lobe "U"-shaped tracts in early untreated stages of psychosis occur irrespective of symptom burden, and are distributed across critical functional networks associated with executive function and salience processing. While we limited the investigation to the frontal lobe, a framework has been developed to study such connections in other brain regions, enabling further extensive investigations jointly with the major deep white matter pathways.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Transtornos Psicóticos/patologia
17.
Elife ; 112022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519725

RESUMO

Like neocortical structures, the archicortical hippocampus differs in its folding patterns across individuals. Here, we present an automated and robust BIDS-App, HippUnfold, for defining and indexing individual-specific hippocampal folding in MRI, analogous to popular tools used in neocortical reconstruction. Such tailoring is critical for inter-individual alignment, with topology serving as the basis for homology. This topological framework enables qualitatively new analyses of morphological and laminar structure in the hippocampus or its subfields. It is critical for refining current neuroimaging analyses at a meso- as well as micro-scale. HippUnfold uses state-of-the-art deep learning combined with previously developed topological constraints to generate uniquely folded surfaces to fit a given subject's hippocampal conformation. It is designed to work with commonly employed sub-millimetric MRI acquisitions, with possible extension to microscopic resolution. In this paper, we describe the power of HippUnfold in feature extraction, and highlight its unique value compared to several extant hippocampal subfield analysis methods.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Humanos , Hipocampo/diagnóstico por imagem , Hipocampo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
18.
Transl Psychiatry ; 12(1): 358, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050318

RESUMO

Cholinergic dysfunction has been implicated in the pathophysiology of psychosis and psychiatric disorders such as schizophrenia, depression, and bipolar disorder. The basal forebrain (BF) cholinergic nuclei, defined as cholinergic cell groups Ch1-3 and Ch4 (Nucleus Basalis of Meynert; NBM), provide extensive cholinergic projections to the rest of the brain. Here, we examined microstructural neuroimaging measures of the cholinergic nuclei in patients with untreated psychosis (~31 weeks of psychosis, <2 defined daily dose of antipsychotics) and used magnetic resonance spectroscopy (MRS) and transcriptomic data to support our findings. We used a cytoarchitectonic atlas of the BF to map the nuclei and obtained measures of myelin (quantitative T1, or qT1 as myelin surrogate) and microstructure (axial diffusion; AxD). In a clinical sample (n = 85; 29 healthy controls, 56 first-episode psychosis), we found significant correlations between qT1 of Ch1-3, left NBM and MRS-based dorsal anterior cingulate choline in healthy controls while this relationship was disrupted in FEP (p > 0.05). Case-control differences in qT1 and AxD were observed in the Ch1-3, with increased qT1 (reflecting reduced myelin content) and AxD (reflecting reduced axonal integrity). We found clinical correlates between left NBM qT1 with manic symptom severity, and AxD with negative symptom burden in FEP. Intracortical and subcortical myelin maps were derived and correlated with BF myelin. BF-cortical and BF-subcortical myelin correlations demonstrate known projection patterns from the BF. Using data from the Allen Human Brain Atlas, cholinergic nuclei showed significant enrichment for schizophrenia and depression-related genes. Cell-type specific enrichment indicated enrichment for cholinergic neuron markers as expected. Further relating the neuroimaging correlations to transcriptomics demonstrated links with cholinergic receptor genes and cell type markers of oligodendrocytes and cholinergic neurons, providing biological validity to the measures. These results provide genetic, neuroimaging, and clinical evidence for cholinergic dysfunction in schizophrenia.


Assuntos
Prosencéfalo Basal , Transtornos Psicóticos , Prosencéfalo Basal/diagnóstico por imagem , Prosencéfalo Basal/metabolismo , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/patologia , Colinérgicos , Humanos , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/genética , Transtornos Psicóticos/patologia , Transcriptoma
19.
Neuroimage Clin ; 36: 103201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36126518

RESUMO

This study aimed to evaluate the use of diffusion kurtosis imaging (DKI) to detect microstructural abnormalities within the temporal pole (TP) and its temporopolar cortex in temporal lobe epilepsy (TLE) patients. DKI quantitative maps were obtained from fourteen lesional TLE and ten non-lesional TLE patients, along with twenty-three healthy controls. Data collected included mean (MK); radial (RK) and axial kurtosis (AK); mean diffusivity (MD) and axonal water fraction (AWF). Automated fiber quantification (AFQ) was used to quantify DKI measurements along the inferior longitudinal (ILF) and uncinate fasciculus (Unc). ILF and Unc tract profiles were compared between groups and tested for correlation with disease duration. To characterize temporopolar cortex microstructure, DKI maps were sampled at varying depths from superficial white matter (WM) towards the pial surface. Patients were separated according to the temporal lobe ipsilateral to seizure onset and their AFQ results were used as input for statistical analyses. Significant differences were observed between lesional TLE and controls, towards the most temporopolar segment of ILF and Unc proximal to the TP within the ipsilateral temporal lobe in left TLE patients for MK, RK, AWF and MD. No significant changes were observed with DKI maps in the non-lesional TLE group. DKI measurements correlated with disease duration, mostly towards the temporopolar segments of the WM bundles. Stronger differences in MK, RK and AWF within the temporopolar cortex were observed in the lesional TLE and noticeable differences (except for MD) in non-lesional TLE groups compared to controls. This study demonstrates that DKI has potential to detect subtle microstructural alterations within the temporopolar segments of the ILF and Unc and the connected temporopolar cortex in TLE patients including non-lesional TLE subjects. This could aid our understanding of the extrahippocampal areas, more specifically the temporal pole role in seizure generation in TLE and might inform surgical planning, leading to better seizure outcomes.


Assuntos
Epilepsia do Lobo Temporal , Substância Branca , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Lobo Temporal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Convulsões
20.
Sci Data ; 9(1): 517, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002444

RESUMO

The Brain Imaging Data Structure (BIDS) established community consensus on the organization of data and metadata for several neuroimaging modalities. Traditionally, BIDS had a strong focus on functional magnetic resonance imaging (MRI) datasets and lacked guidance on how to store multimodal structural MRI datasets. Here, we present and describe the BIDS Extension Proposal 001 (BEP001), which adds a range of quantitative MRI (qMRI) applications to the BIDS. In general, the aim of qMRI is to characterize brain microstructure by quantifying the physical MR parameters of the tissue via computational, biophysical models. By proposing this new standard, we envision standardization of qMRI through multicenter dissemination of interoperable datasets. This way, BIDS can act as a catalyst of convergence between qMRI methods development and application-driven neuroimaging studies that can help develop quantitative biomarkers for neural tissue characterization. In conclusion, this BIDS extension offers a common ground for developers to exchange novel imaging data and tools, reducing the entrance barrier for qMRI in the field of neuroimaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Biomarcadores , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...