Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(8)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39200058

RESUMO

Antimicrobial peptides (AMPs) are a promising class of therapeutic alternatives with broad-spectrum activity against resistant pathogens. Small AMPs like temporin-SHa (1) and its first-generation analog [G10a]-SHa (2) possess notable efficacy against Gram-positive and Gram-negative bacteria. In an effort to further improve this antimicrobial activity, second-generation analogs of 1 were synthesised by replacing the natural glycine residue at position-10 of the parent molecule with atypical amino acids, such as D-Phenylalanine, D-Tyrosine and (2-Naphthyl)-D-alanine, to study the effect of hydrophobicity on antimicrobial efficacy. The resultant analogs (3-6) emerged as broad-spectrum antibacterial agents. Notably, the [G10K]-SHa analog (4), having a lysine substitution, demonstrated a 4-fold increase in activity against Gram-negative (Enterobacter cloacae DSM 30054) and Gram-positive (Enterococcus faecalis DSM 2570) bacteria relative to the parent peptide (1). Among all analogs, [G10f]-SHa peptide (3), featuring a D-Phe substitution, showed the most potent anticancer activity against lung cancer (A549), skin cancer (MNT-1), prostate cancer (PC-3), pancreatic cancer (MiaPaCa-2) and breast cancer (MCF-7) cells, achieving an IC50 value in the range of 3.6-6.8 µM; however, it was also found to be cytotoxic against normal cell lines as compared to [G10K]-SHa (4). Peptide 4 also possessed good anticancer activity but was found to be less cytotoxic against normal cell lines as compared to 1 and 3. These findings underscore the potential of second-generation temporin-SHa analogs, especially analog 4, as promising leads to develop new broad-spectrum antibacterial and anticancer agents.

2.
Biomolecules ; 12(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35740895

RESUMO

As the technologies for peptide synthesis and development continue to mature, antimicrobial peptides (AMPs) are being widely studied as significant contributors in medicinal chemistry research. Furthermore, the advancement in the synthesis of dendrimers' design makes dendrimers wonderful nanostructures with distinguishing properties. This study foregrounds a temporin SHa analog, [G10a]-SHa, and its dendrimers as globular macromolecules possessing anticancer and antibacterial activities. These architectures of temporin SHa, named as [G10a]-SHa, its dendrimeric analogs [G10a]2-SHa and [G10a]3-SHa, and [G10a]2-SHa conjugated with a polymer molecule, i.e., Jeff-[G10a]2-SHa, were synthesized, purified on RP-HPLC and UPLC and fully characterized by mass, NMR spectroscopic techniques, circular dichroism, ultraviolet, infrared, dynamic light scattering, and atomic force microscopic studies. In pH- and temperature-dependent studies, all of the peptide dendrimers were found to be stable in the temperature range up to 40-60 °C and pH values in the range of 6-12. Biological-activity studies showed these peptide dendrimers possessed improved antibacterial activity against different strains of both Gram-positive and Gram-negative strains. Together, these dendrimers also possessed potent selective antiproliferative activity against human cancer cells originating from different organs (breast, lung, prostate, pancreas, and liver). The high hemolytic activity of [G10a]2-SHa and [G10a]3-SHa dendrimers, however, limits their use for topical treatment, such as in the case of skin infection. On the contrary, the antibacterial and anticancer activities of Jeff-[G10a]2-SHa, associated with its low hemolytic action, make it potentially suitable for systemic treatment.


Assuntos
Antibacterianos , Antineoplásicos , Dendrímeros , Neoplasias , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Dicroísmo Circular , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , Neoplasias/tratamento farmacológico
3.
Bioorg Chem ; 124: 105841, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35523075

RESUMO

The cyclic peptide stylissatin A(STA) was obtained from the Papua New Guinean marine spongeStylissamassaas a potent nitric oxide (NO) inhibitor.Among its reported analogs,cyclo-{Glu6, Ala2}-STA1potentlyinhibited theinterleukin-2 and proliferation of T-cells indicating position 2 of sequence playing important part in biological activities of this compound.In current studies, second generation analogs of STAwere synthesizedaround its most active analog1by screening position 2 of analog1with different amino acid. All analogs2-6were identified by mass, and NMR techniques.The synthesized analogswere also evaluated against NO generation by lipopolysaccharide (LPS)-stimulated murine J774.2macrophages, ROS inhibition from whole blood phagocytes, and T-cell proliferation from Jurkat cells.All analogswere found to be inactive towards interleukin-2, T-cells proliferation, and ROS inhibition. The analog2showed a potent suppression of NO (IC50 = 46.0 ± 2.2 µM) that was superior to the activityreported for natural product STA.Further attempts to optimizeanalog2afforded new nitric oxide inhibitors2a-2fwhich were found less active than2.The analog2also downregulated the transcription of pro-inflammatory molecules, tumor necrosis factor-α, interlukin-1ß, caspase-1 and ASC which further highlights its anti-inflammatory and possible therapeutic potential. Analog2was non-toxic to BJ and Vero cell lines of normal mammalian origin.


Assuntos
Óxido Nítrico , Peptídeos Cíclicos , Animais , Humanos , Lipopolissacarídeos/farmacologia , Mamíferos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Peptídeos Cíclicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Probiotics Antimicrob Proteins ; 14(2): 391-405, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092568

RESUMO

Anti-microbial peptides (AMPs) have attracted major attention due to their potential bio-activities against some multidrug resistant pathogens. The present study evaluated the mechanism of actions of highly potent AMP temporin-SHa analogs, i.e., [G4a]-SHa, [G7a]-SHa, and [G10a]-SHa, against methicillin-resistant Staphylococcus aureus (MRSA) NCTC (13277) with minimum inhibitory concentrations (MICs) of 14.35, 7.16, and 3.58 µM, respectively. These analogs exhibited significant anti-MRSA activity at physiological salt concentration, 30% fetal bovine serum, and 30% human serum. [G4a]-SHa and [G7a]-SHa were non-hemolytic and non-cytotoxic to normal mouse fibroblast 3T3 cell and human Caco-2 cell line. Atomic force microscopy revealed that these analogs have profound effect on the morphological changes in MRSA surface with significant leakage of cell cytoplasmic content. Propidium iodide uptake kinetic assay and (bis-(1,3-dibutylbarbituric acid) trimethine oxonol) DiBAC4(3) membrane depolarization assay demonstrated that these analogs display a membrane disrupting property, characterized by elevation of plasma membrane permeability and rapid transmembrane potential depolarization. [G10a]-SHa showed a significant anti-biofilm activity against biofilm forming S. aureus (ATCC 6538). Acute in vivo toxicity studies revealed that [G10a]-SHa possesses some toxic effect at 100-mg/kg dose. While [G4a]-SHa at 100 mg/kg, i.p. has no toxic effect even after 48 h, [G7a]-SHa also did not show any toxic effect at the dose of 100 mg/kg, i.p. during 24-h observation of animals. In conclusion, [G4a]-SHa, [G7a]-SHa, and [G10a]-SHa show improved activity against MRSA and stability compared to SHa peptide. Although highly potent, [G10a]-SHa, due to its hemolytic activity, might be more suitable for topical application, whereas [G4a]-SHa and [G7a]-SHa have potential to be used for systemic application.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes , Células CACO-2 , Membrana Celular , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Staphylococcus aureus
5.
Biomolecules ; 9(10)2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614561

RESUMO

Helicobacterpylori is one of the most prevalent pathogens colonizing 50% of the world's population and causing gastritis and gastric cancer. Even with triple and quadruple antibiotic therapies, H. pylori shows increased prevalence of resistance to conventional antibiotics and treatment failure. Due to their pore-forming activity, antimicrobial peptides (AMP) are considered as a good alternative to conventional antibiotics, particularly in the case of resistant bacteria. In this study, temporin-SHa (a frog AMP) and its analogs obtained by Gly to Ala substitutions were tested against H. pylori. Results showed differences in the antibacterial activity and toxicity of the peptides in relation to the number and position of D-Ala substitution. Temporin-SHa and its analog NST1 were identified as the best molecules, both peptides being active on clinical resistant strains, killing 90-100% of bacteria in less than 1 h and showing low to no toxicity against human gastric cells and tissue. Importantly, the presence of gastric mucins did not prevent the antibacterial effect of temporin-SHa and NST1, NST1 being in addition resistant to pepsin. Taken together, our results demonstrated that temporin-SHa and its analog NST1 could be considered as potential candidates to treat H. pylori, particularly in the case of resistant strains.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Helicobacter pylori/crescimento & desenvolvimento , Humanos , Espectrometria de Massas , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA