Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Mar Environ Res ; 200: 106645, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013227

RESUMO

Due to continuous increase in marine plastic waste, microplastics are ubiquitous in the marine environment. However, there are few studies on the harmful effects caused by microplastics with different particle sizes, and the interaction between particle size and concentration requires further investigation. This study explored the differences in physiological and biochemical responses, photosynthesis and oxidative stress damage of the microalga Isochrysis galbana exposed to three different particle size microplastics. It was found that different particle sizes and concentrations of microplastics resulted in significant differences (p < 0.05) in the growth rate, photosynthesis, and oxidative stress level of I. galbana. With the decrease of the particle size and lowering concentration of microplastics, the growth rate, photosynthesis and oxidative stress levels of I. galbana were reduced. Significant differences in photosynthesis and oxidative stress levels were observed when I. galbana was exposed to smallest particle size and lowest concentration of microplastics. This study provides new insights about whether polystyrene microplastics of different particle sizes and concentrations exhibit complex effects on microalgae, and explores the underlying reasons for such effects. In short, this study predicts the exacerbating adverse effects of microplastic pollution on the primary productivity, with significant implications for marine food webs and ecosystem health.

2.
Microsc Res Tech ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729775

RESUMO

The Pteridaceae family, known for its taxonomic complexity, presents challenges in identification due to high variability among its species. This study investigates the spore morphology employing both SEM and LM techniques in 10 Pteridaceae taxa phytogeographicaly Sino-Himalayan, Malesian, and European elements in Pakistan. The taxa include Adiantum capillus-veneris, A. incisum, A. venustum, Aleuritopteris bicolor, Oeosporangium nitidulum, O. pteridioides, Onychium cryptogrammoides, O. vermae, Pteris cretica, and P. vittata. The objective is to assess their taxonomic relevance and develop a spore-based taxonomic key. Findings indicate differences in spore shape, sizes, exospore thickness, and in surface ornamentation highlighting the potential for taxonomic differentiation. Spores are trilete, and notable differences are observed in the dimension of spores in both distal and proximal sides. Equatorial dimensions vary between 35 and 50 µm, while the polar diameter ranges from 29 to 50 µm. SEM revealed different spore ornamentation types that show several useful characteristics establishing valuable taxonomic variations. The studied Adiantum taxa feature a perispore with tubercules and a micro-granulose surface. The spores of examined Oeosporangium and Aleuritopteris taxa shows cristate sculptures with variable ornamentations. Both species of Onychium have tuberculate-pleated tubercles with sinuous folds on both distal and proximal sides. The surface ornamentation among examined Pteris taxa show variability. PCA analysis indicated that spore quantitative data identified distinct groups, underscoring taxonomic significance. Nevertheless, there was variation observed in surface ornamentation and spore shape, indicating the potential for discrimination among taxa. RESEARCH HIGHLIGHTS: Spore morphology of 10 Pteridaceae taxa has been investigated through LM and SEM. Investigated species shows differences in spore shape, sizes, exospore thickness, and in surface ornamentation. Ornamentation on the perispore provides several valuable characteristics, establishing useful taxonomic distinctions. Spore morphological analysis is effective at the generic level, with minor distinctions discernible at the species level.

3.
J Hazard Mater ; 470: 134107, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554520

RESUMO

Rayon microfibers, micro-sized semi-synthetic polymers derived from cellulose, have been frequently detected and reported as "micropollutants" in marine environments. However, there has been limited research on their ecotoxicity and combined effects with persistent organic pollutants (POPs). To address these knowledge gaps, thick-shell mussels (Mytilus coruscus) were exposed to rayon microfibers at 1000 pieces/L, along with polychlorinated biphenyls (PCBs) at 100 and 1000 ng/L for 14 days, followed by a 7-day recovery period. We found that rayon microfibers at the environmentally relevant concentration exacerbated the irreversible effects of PCBs on the immune and digestive systems of mussels, indicating chronic and sublethal impacts. Furthermore, the results of 16 s rRNA sequencing demonstrated significant effects on the community structure, species richness, and diversity of the mussels' intestinal microbiota. The branching map analysis identified the responsive bacteria to rayon microfibers and PCBs belonging to the Proteobacteria, Actinobacteriota, and Bacteroidota phyla. Despite not being considered a conventional plastic, the extensive and increasing use of rayon fibers, their direct toxicological effects, and their interaction with POPs highlight the need for urgent attention, investigation, and regulation to address their contribution to "micropollution".


Assuntos
Microbioma Gastrointestinal , Mytilus , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Bifenilos Policlorados/toxicidade , Poluentes Químicos da Água/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Mytilus/efeitos dos fármacos , Celulose/química , Celulose/toxicidade , RNA Ribossômico 16S/genética
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123957, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310741

RESUMO

The drug pharmacokinetics is affected upon binding with proteins, thus making drug-protein interactions crucial. This study investigated the interaction between enzalutamide and human major antiproteinase alpha-2-macroglobulin (α2M) by using multi spectroscopic and calorimetric techniques. The spectroscopic techniques such as circular dichroism (CD), intrinsic fluorescence, and UV-visible absorption were used to determine the mechanism of enzalutamide-α2M interaction. Studies on the quenching of fluorescence at three different temperatures showed that the enzalutamide-α2M complex is formed through static quenching mechanism. The change in microenvironment around tyrosine residues in protein was detected through synchronised fluorescence. The secondary structure of α2M was slightly altered by enzalutamide according to far UV-CD spectral analysis. Changes in position of amide I band in FTIR spectra further confirm the secondary structural alteration in α2M. According to thermodynamic characteristics such as fluorescence quenching and isothermal titration calorimetry (ITC), hydrogen bonds and hydrophobic interactions were involved in the interaction machanism. The ITC reiterated the exothermic and spontaneous nature of the interaction. The lower proteinase inhibitory activity of the α2M-enzalutamide conjugate as reflects the disruption of the native α2M structure upon interaction with enzalutamide.


Assuntos
Antineoplásicos , Benzamidas , Feniltioidantoína , alfa 2-Macroglobulinas Associadas à Gravidez , Humanos , Gravidez , Feminino , alfa 2-Macroglobulinas Associadas à Gravidez/química , Dicroísmo Circular , Nitrilas , Termodinâmica , Ligação Proteica , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência , Calorimetria , Sítios de Ligação
5.
Sci Total Environ ; 918: 170552, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309332

RESUMO

Anthropogenic noise has significantly increased due to human activities, posing a threat to the health and survival of marine organisms. However, current studies have often emphasized its effects on the physiological aspects of marine organisms, while ignored the relationship between the neuroendocrine system and behavior. This study aimed to evaluate the righting behavior and relevant physiological functions of the central nervous system (CNS) in sea slug (Onchidium reevesii) exposed to low-frequency noise and subsequent noise removal. The duration of the sea slugs' righting reflex increased with longer noise exposure time. The degree of neuronal cell damage and apoptosis were significantly increased and relevant gene expressions were affected (Glu, AChE, FMRFamide and CaMKII) (P < 0.05). After the removal of noise, the righting reflex speed gradually recovered, and the degree of neuronal cell damage, apoptosis and the expression levels of genes continued to decrease. Pearson correlation analysis showed that the righting time was positively correlated with CNS tissue and DNA damage, apoptosis rate, and negatively correlated with the expression levels of genes. Therefore, low-frequency noise exposure causes damage to the CNS of sea slugs, subsequently impairing their normal behavior. Sea slugs exhibited partial recovery within 384 h after removing noise. These findings provide valuable insights into the effects of low-frequency noise on the CNS and behavior of marine invertebrates.


Assuntos
Gastrópodes , Animais , Humanos , Reflexo de Endireitamento/fisiologia , Gastrópodes/metabolismo , Ruído/efeitos adversos , Sistema Nervoso Central , Organismos Aquáticos
6.
Sci Total Environ ; 914: 169961, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211852

RESUMO

Micro-/nano-plastic particles (MNPs) are present in the ocean with potential detrimental impacts on marine ecosystems. Bivalves are often used as marine bioindicators and are ideal to evaluate the threat posed by various-sized MNPs. We exposed the mussel Mytilus coruscus to MNPs with different particle sizes (70 and 500 nm, 5, 10 and 100 µm) for 3, 72 h and 30 days. The antioxidant responses in digestive gland and the hemolymph were then evaluated. The time of exposure played a strong modulating role in the biological response. A 3-hour exposure had no significant impact on the digestive gland. After 72 h, an increase in oxidative stress was observed in the digestive gland, including increased hydrogen peroxide (H2O2) level, catalase (CAT), glutathione peroxidase (GPx) activities and malondialdehyde (MDA) production. After a 30-day exposure, the oxidative stress decreased while lipid peroxidation increased. A 30-day exposure increased hemocyte mortality (HM) and reactive oxygen species (ROS) levels in the hemolymph, while phagocytosis (PA), lysosome content (LC), mitochondrial number (MN) and mitochondrial membrane potential (MMP) significantly decreased. Longer-term exposure to MNPs caused oxidative stress in the digestive gland as well as impaired viability and immunity of hemocytes. Particle size also influenced the response with smaller particles having more severe effects. A depuration for 7 days was enough to reverse the negative effects observed on the digestive gland and hemolymph. This study provides new insights on the effects of small-sized MNPs, especially nanoplastic particles (NPs), on aquatic organisms, and provides a solid theoretical knowledge background for future studies on toxic effects of MNPs.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Antioxidantes/farmacologia , Mytilus/fisiologia , Ecossistema , Peróxido de Hidrogênio/farmacologia , Imunidade , Poluentes Químicos da Água/toxicidade
7.
Environ Pollut ; 341: 122999, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995954

RESUMO

Pollution with complex mixtures of contaminants including micro- and nano-plastics (MNPs) and organic pollutants like polycyclic aromatic hydrocarbons (PAH) poses a major threat to coastal marine ecosystems. Toxic mechanisms of contaminant mixtures are not well understood in marine organisms. We studied the effects of single and combined exposures to polycyclic aromatic hydrocarbon phenanthrene (Phe) and MNPs mixture with sizes of 70 nm, 5 µm and 100 µm on the immune health and oxidative stress parameters in the thick-shell mussel Mytilus coruscus. Immune cells (hemocytes) were more sensitive to the pollutant-induced oxidative stress than the gills. In hemocytes of co-exposed mussels, elevated mortality, lower lysosomal content, high production of reactive oxygen species (ROS) and decrease mitochondrial were found. Disparate responses of antioxidant enzymes in the hemolymph (e.g. increased superoxide dismutase (SOD) activity without a corresponding increase in catalase (CAT) in Phe exposures and an increase in CAT without a change in SOD in MNPs exposures) suggests misbalance of the antioxidant defense in the pollutant-exposed mussels. Gill lacked pronounced oxidative stress response showing a decline in ROS and antioxidant levels. Tissue-specific single and combined effects of Phe and MNPs suggest variation in bioavailability and/or different sensitivity to these pollutants in the studied tissues. Notably, the combined effects of MNPs and Phe were additive or antagonistic, showing that MNPs do not enhance and occasionally mitigate the toxic effects of Phe on the hemocytes and the gills of the mussels. Overall, our study sheds light on the impact of long-term exposure to MNPs and Phe mixtures on mussels, showing high sensitivity of the immune system and modulation of the Phe toxicity by MNPs co-exposure. These findings that may have implications for understanding the impacts of combined PAH and MNPs pollution on the health of mussel populations from polluted coastal habitats.


Assuntos
Mytilus , Fenantrenos , Poluentes Químicos da Água , Animais , Antioxidantes/farmacologia , Mytilus/fisiologia , Microplásticos , Espécies Reativas de Oxigênio , Ecossistema , Poluentes Químicos da Água/análise , Plásticos/farmacologia , Superóxido Dismutase , Fenantrenos/toxicidade
8.
Mar Environ Res ; 193: 106282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042633

RESUMO

Despite being widely distributed in Asia, Carcinoscorpius rotundicauda is often overlooked and, its population status remains unclear. Moreover, it is threatened by illegal harvesting and degradation of mangrove ecosystems. Protecting its habitat is essential for population and biodiversity conservation, as mangroves provide nursery grounds and food supply for C. rotundicauda. This review discusses the biological characteristics of C. rotundicauda, including ecology, nutrition, life history, toxicology, and immunology. It also presents information about its distribution and population status. The review emphasizes the challenges faced by C. rotundicauda and proposes a conservation framework that involves the participation of local residents to facilitate conservation efforts. Collaboration between local residents and communities is proposed to protect and monitor the mangrove ecosystem. Additionally, this framework can support field research, protect C. rotundicauda juveniles and other species, and ensure the livelihood of local residents through participation in carbon trading markets and eco-industries such as eco-farming and eco-tourism.


Assuntos
Ecossistema , Caranguejos Ferradura , Animais , Biodiversidade , Ecologia
9.
Sci Total Environ ; 912: 169376, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104827

RESUMO

Excessive use of plastics in daily life is causing plastic pollution in aquatic environment and threatening the aquatic life. Therefore, research on the plastic pollution in aquatic environment is crucial to understand its impact and develop effective solution for safeguarding aquatic life and ecosystem. The current study investigated the effects of water borne polystyrene nanoparticles (PS-NPs) on hemato-immunological indices, serum metabolic enzymes, gills, and liver antioxidant parameters, plasma cortisol level and histopathological changes in liver and gill tissues of the widely distributed fish Hypophthalmichthys molitrix. The fingerlings of H. molitrix were exposed to different concentrations (T1-0.5, T2-1.0, and T3-2.0 mg/L) of PS-NPs respectively for 15 days consecutively. Our results indicated the dose dependent negative effects of PS-NPs on the physiology and histopathology of H. molitrix. Immuno-hematological indices showed significant increase in WBCs count, phagocytic activity, and lysozyme activity, while decreased RBC count, Hct%, Hb level, total proteins, IgM, and respiratory burst activity were observed. The levels of antioxidant enzymes like SOD, CAT and POD showed the decreasing trends while metabolic enzymes (AST, ALT, ALP and LDH), LPO, ROS activities and relative expressions of SOD1, CAT, HIF1-α and HSP-70 genes increased with increased concentrations of PS-NPs. Moreover, blood glucose and cortisol levels also showed significant increasing trends with dose dependent manner. Histopathological examination indicated moderate to severe changes in the gills and liver tissues of the group treated with 2.0 mg/L of PS-NPs. Overall, the results showed the deleterious effects of PS-NPs on physiology, immunity, metabolism, and gene expressions of H. molitrix. It is concluded that particulate plastic pollution has deleterious effects on filter feeding fish, which might affect human health through food chain and particulate chemical toxicity.


Assuntos
Carpas , Nanopartículas , Poluentes Químicos da Água , Animais , Humanos , Antioxidantes/metabolismo , Carpas/metabolismo , Poliestirenos/toxicidade , Hidrocortisona , Ecossistema , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade
10.
Sci Total Environ ; 912: 169558, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135081

RESUMO

Industrial development not only triggers heavy metal pollution but also introduces a less easily discernible disturbance: low-frequency noise pollution. Low-frequency noise can disrupt wildlife behavior, potentially exerting complex effects through interacting with heavy metals. Nevertheless, the cumulative impacts of low-frequency noise and cadmium (Cd) pollution on marine organisms remain largely unexplored. This study aimed to evaluate the immune defense response of sea slugs (Onchdium reevesii) exposed to Cd (1.32 mg/L) and low-frequency noise (500 Hz, 1000 Hz). Our results show that Cd exposure results in Cd2+ accumulation in the sea slug's hepatopancreas, leading to a decrease in total antioxidant capacity (TAC) and a significant increase in enzyme activities, including glutathione (GSH), lipid peroxidation (LPO), and aspartate transferase (AST). Additionally, there is a substantial upregulation in the expression of genes related to tumor protein p53 (p53), Cytochrome C (CytC), Caspase 3, and Caspase 9, as well as metallothionein (MT) and heat shock protein 70 (Hsp70) genes. Concurrently, an excessive production of reactive oxygen species (ROS) occurs in the hemocytes, resulting in apoptosis and subsequent diminished cell viability, with these effects positively correlating with the exposure duration. Furthermore, when sea slugs were exposed to both Cd and low-frequency noise, there was a decrease in the hepatopancreas's antioxidant capacity and an enhancement in hemocytes immune responses, which positively correlated with low-frequency noise frequency. The comprehensive assessment of biomarker responses highlights that low-frequency noise has the potential to amplify the deleterious effects of Cd on sea slug physiology, with this negative impact positively linked to noise frequency. Consequently, our study underscores that the combined influence of low-frequency noise and Cd pollution magnifies the effects on sea slug health. This could potentially disrupt the population stability of this species within its natural habitat, providing fresh insights into the evaluation of cumulative environmental pollution risks.


Assuntos
Gastrópodes , Metais Pesados , Animais , Cádmio/metabolismo , Antioxidantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Estresse Oxidativo , Ruído , Metais Pesados/metabolismo , Glutationa/metabolismo , Gastrópodes/metabolismo , Metalotioneína/metabolismo
11.
Toxicol In Vitro ; 95: 105766, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38104743

RESUMO

Considering the wide application of nanoparticles in various fields of life and growing concern regarding their toxic effects, the present study was designed with the aim to evaluate the potential risks of using copper sulfate nanoparticles (CuSO4-NPs) in comparison to bulk form. Nanoparticles of CuSO4, having mean size of 73 nm were prepared by ball milling method, and fingerlings of Labeo rohita were exposed to two levels, 20 and 100 µg L-1 of CuSO4 in both bulk and nano forms for 28 days and their comparative effects on the metallothioneins (MTs), heat shock proteins 70 (HSP 70), lipid profile, cholesterol (CHOL) and triglyceraldehyde (TG) levels, activities of some metabolic enzymes Alanine transaminase (ALT), Aspartate transaminase (AST) Akaline phosphatase (ALP), and genes expressions of HSP-70, TNF-α and IL1-ß were investigated. CuSO4 showed the concentration and particle type dependent effects. The over expression of HSPs and MTs, significant decreases in CHOL, TG, low density lipid (LDL) levels and ALP activity, while significant increases in high density lipid (HDL)level as well as ALT and AST activities and HSP-70, TNF-α and IL1-ß expressions were observed in response to higher concentration of both bulk and nano form of copper sulfate. At lower concentration (20 µg L-1), however, only bulk form showed toxicity. Thus, low concentrations of CuSO4-NPs pose negligible threat to freshwater fish.


Assuntos
Sulfato de Cobre , Nanopartículas , Animais , Sulfato de Cobre/toxicidade , Fator de Necrose Tumoral alfa , Nanopartículas/toxicidade , Expressão Gênica , Alanina Transaminase/metabolismo , Proteínas de Choque Térmico HSP70 , Lipídeos , Cobre/toxicidade
12.
J Biomol Struct Dyn ; : 1-11, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811549

RESUMO

2,4-Dibromophenol (DBP) has several industrial applications, including as a wood preservative and flame retardant. This study investigated the interaction between DBP and human hemoglobin (Hb) using spectroscopic, molecular docking and molecular dynamic techniques. The UV-visible spectra showed ground-state complex formation between DBP and Hb. Fluorescence studies revealed that DBP binding caused significant quenching of Hb fluorescence by the static quenching mechanism. The binding of DBP to Hb is a spontaneous process that involves van der Waals forces and hydrogen bonds. There is one DBP binding site on each Hb molecule that is located at the α1ß2 interface of Hb. DBP binding did not alter the microenvironment of tyrosine and tryptophan residues in Hb. Circular dichroism studies revealed that DBP increased the α-helical content of Hb. The intrinsic esterase activity of Hb was inhibited by DBP in a concentration-dependent manner. Molecular docking showed that DBP binds to Hb via hydrogen bonds, hydrophobic, van der Waals and π-π interactions. Molecular dynamics simulation confirmed that the Hb-DBP complex is stable. Overall, the results of this study clearly show that DBP induces structural changes and interferes with the function of Hb. This can have important implications for human health.Communicated by Ramaswamy H. Sarma.

13.
J Ayub Med Coll Abbottabad ; 35(2): 203-209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37422806

RESUMO

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD), the third leading cause of death worldwide, is characterized by airflow limitation that can be due to abnormalities in the airway and/or alveoli. Genetic diagnosis at an early stage can be a key factor in the provision of accurate and timely treatment. Single Nucleotide polymorphisms (SNPs) are an important tool to study genetic association/ predisposition of the disease and have great potential to be diagnostic markers for early diagnosis of disease. METHODS: This case-control COPD association study was designed for the five SNPs residing on potential candidate genes (SERPINA1, SERPINA3, RIN3), to check whether these genes are involved in the genetic predisposition for COPD in the Pakistani population or not. The SNAPshot method was used to find out the risk alleles and haplotypes using ABI Genetic analyzer 3130. GeneMapper, Haploview and PLINK 1.9 software were used for analyzing the genotypes and haplotypes taking smoking exposure and gender as covariates. RESULTS: Two of the SNPs, rs4934 and rs17473 were found to be independently and significantly associated with COPD in our studied population whereas haplotype H1 for two SNPs, rs754388 and rs17473 (that are in high linkage disequilibrium), was found to be a significant risk factor for developing COPD symptoms. CONCLUSIONS: SNP variants of SERPINA1 and SERPINA3 are significantly and independently associated with COPD in the local population of Pakistan.


Assuntos
Cromossomos Humanos Par 14 , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos de Casos e Controles , Paquistão/epidemiologia , Frequência do Gene , Genótipo , Predisposição Genética para Doença , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/diagnóstico
14.
J Biomol Struct Dyn ; : 1-16, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498152

RESUMO

In the present study, we investigated the interaction of alpha-2-macroglobulin (α2M) with naringenin using multi-spectroscopic, molecular docking, and molecular simulation approaches to identify the functional changes and structural variations in the α2M structure. Our study suggests that naringenin compromised α2M anti-proteinase activity. The results of absorption spectroscopy and fluorescence measurement showed that naringenin-α2M formed a complex with a binding constant of (kb)∼104, indicative of moderate binding. The value of ΔG° in the binding indicates the process to be spontaneous and the major force responsible to be hydrophobic interaction. The findings of FRET reveal the binding distance between naringenin and the amino acids of α2M was 2.82 nm. The secondary structural analysis of α2M with naringenin using multi-spectroscopic methods like synchronous fluorescence, red-edge excitation shift (REES), FTIR, and CD spectra further confirmed the significant conformational alterations in the protein. Molecular docking approach reveals the interactions between naringenin and α2M to be hydrogen bonds, van der Waals forces, and pi interactions, which considerably favour and stabilise the binding. Molecular dynamics modelling simulations also supported the steady binding with the least RMSD deviations. Our study suggests that naringenin interacts with α2M to alter its confirmation and compromise its activity.Communicated by Ramaswamy H. Sarma.

15.
J Trace Elem Med Biol ; 80: 127272, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37516010

RESUMO

BACKGROUND: Nickel is a heavy metal that is regarded as a possible hazard to living organisms due to its toxicity and carcinogenicity. Nickel chloride (NiCl2), an inorganic divalent Ni compound, has been shown to cause oxidative stress in cells by altering the redox equilibrium. We have investigated the effect of NiCl2 on isolated human erythrocytes under in vitro condition. METHODS: Isolated erythrocytes were treated with different concentrations of NiCl2 (25-500 µM) for 24 h at 37 ºC. Hemolysates were prepared and several biochemical parameters were analyzed in them. RESULTS: Treatment of erythrocytes with NiCl2 enhanced the intracellular generation of reactive oxygen species (ROS). A significant increase in hydrogen peroxide levels and oxidation of proteins and lipids was also seen. This was accompanied by a reduction in levels of nitric oxide, glutathione, free amino groups and total sulfhydryl groups. NiCl2 treatment impaired both enzymatic and non-enzymatic defense systems, resulting in lowered antioxidant capacity and diminished ability of cells to quench free radicals and reduce metal ions. NiCl2 exposure also had an inhibitory effect on the activity of enzymes involved in pathways of glucose metabolism (glycolytic and pentose phosphate shunt pathways). Increased level of methemoglobin, which is inactive in oxygen transport, was also seen. The rate of heme breakdown increased resulting in the release of free iron. Exposure to NiCl2 led to considerable cell lysis, indicating damage to the erythrocyte membrane. This was supported by the inhibition of membrane bound enzymes and increase in the osmotic fragility of NiCl2 treated cells. NiCl2 treatment caused severe morphological alterations with the conversion of normal discocytes to echinocytes. All changes were seen in a NiCl2 concentration-dependent manner. CONCLUSION: NiCl2 generates cytotoxic ROS in human erythrocytes which cause oxidative damage that can decrease the oxygen carrying capacity of blood and also lead to anemia.


Assuntos
Níquel , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Níquel/toxicidade , Níquel/metabolismo , Eritrócitos/metabolismo , Oxigênio/metabolismo , Oxigênio/farmacologia
16.
Heliyon ; 9(6): e17334, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416636

RESUMO

For the past 25 years, medical imaging has been extensively used for clinical diagnosis. The main difficulties in medicine are accurate disease recognition and improved therapy. Using a single imaging modality to diagnose disease is challenging for clinical personnel. In this paper, a novel structural and spectral feature enhancement method in NSST Domain for multimodal medical image fusion (MMIF) is proposed. Initially, the proposed method uses the Intensity, Hue, Saturation (IHS) method to generate two pairs of images. The input images are then decomposed using the Non-Subsampled Shearlet Transform (NSST) method to obtain low frequency and high frequency sub-bands. Next, a proposed Structural Information (SI) fusion strategy is employed to Low Frequency Sub-bands (LFS's). It will enhance the structural (texture, background) information. Then, Principal Component Analysis (PCA) is employed as a fusion rule to High Frequency Sub-bands (HFS's) to obtain the pixel level information. Finally, the fused final image is obtained by employing inverse NSST and IHS. The proposed algorithm was validated using different modalities containing 120 image pairs. The qualitative and quantitative results demonstrated that the algorithm proposed in this research work outperformed numerous state-of-the-art MMIF approaches.

17.
ACS Omega ; 8(29): 25988-25998, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521679

RESUMO

Wheat (Triticum aestivum L.) is a prominent grain crop. The goal of the current experiment was to examine the genetic potential of advanced bread wheat genotypes for yield and stripe rust resistance. Ninety-three bread wheat genotypes including three varieties (Kohat-2017, Pakistan-2013, and Morocco) were field tested in augmented design as observational nurseries at three locations (i.e., Kohat, Nowshera, and Peshawar) during the 2018-19 crop season. Various parameters related to yield and stripe rust resistance showed significant differences among genotypes for most of the characters with few exceptions. The analysis of variance revealed significant variations for all the genotypes for all the traits at all three sites with few exceptions where nonsignificant differences were noticed among genotypes. Averaged over three locations, genotypes exhibiting maximum desirable values for yield and yield components were KT-86 (325 tillers) for tillers m-2, KT-50 (2.86 g) for grain weight spike-1, KT-49 (41.6 g) for 1000-grain weight, KT-50 (74 grains) for grains spikes-1, KT-55 (4.76 g) for spike weight, and KT-36 and KT-072 (4586 kg ha-1) for grain yield. Correlation analysis revealed that grain yield had a significant positive correlation with grain spike-1 and grain weight spike-1 at Kohat, with grains spike-1, tillers m-2, and grain weight spike-1 at Nowshera, and with plant height, spike weight, 1000-grain weight, and tillers m-2 at Peshawar. Molecular marker data and host response in the field at the adult stage revealed that Yr15 and Yr10 are both still effective in providing adequate resistance to wheat against prevalent races of stripe rust. Four lines showing desirable lower average coefficient of infection (ACI) values without carrying Yr15 and Yr10 genes show the presence of unique/new resistance gene(s) in the genetic composition of these four lines. Genotype KT-072 (4586 kg ha-1 and 1.3 ACI), KT-07 (4416 kg ha-1 and 4.3 ACI), KT-10 (4346 kg ha-1 and 1.0 ACI), and KT-62 (4338 kg ha-1 and 2.7 ACI) showed maximum values for grain yield and low desirable ACI values, and these lines could be recommended for general cultivation after procedural requirements of variety release.

18.
J Biol Phys ; 49(2): 235-255, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36913165

RESUMO

Alpha-2-macroglobulin (α2M) is an essential antiproteinase that is widely distributed in human plasma. The present study was aimed at investigating the binding of a potential therapeutic dietary flavonol, morin, with human α2M using a multi-spectroscopic and molecular docking approach. Recently, flavonoid-protein interaction has gained significant attention, because a majority of dietary bioactive components interact with proteins, thereby altering their structure and function. The results of the activity assay exhibited a 48% reduction in the antiproteolytic potential of α2M upon interaction with morin. Fluorescence quenching tests unequivocally confirmed quenching in the fluorescence of α2M in the presence of morin, conforming complex formation and demonstrating that the binding mechanism involves a dynamic mode of interaction. Synchronous fluorescence spectra of α2M with morin showed perturbation in the microenvironment around tryptophan residues. Furthermore, structural changes were observed through CD and FT-IR, showing alterations in the secondary structure of α2M induced by morin. FRET further supports the results of the dynamic mode of quenching. Moderate interaction is shown by binding constant values using Stern-Volmer's fluorescence spectroscopy. Morin binds to α2M at 298 K with a binding constant of 2.7 × 104 M-1, indicating the strength of the association. The α2M-morin system was found to have negative ΔG values, which suggests that the binding process was spontaneous. Molecular docking also reveals the different amino acid residues involved in this binding process, revealing that the binding energy is -8.1 kcal/mol.


Assuntos
alfa 2-Macroglobulinas Associadas à Gravidez , Humanos , Gravidez , Feminino , alfa 2-Macroglobulinas Associadas à Gravidez/química , alfa 2-Macroglobulinas Associadas à Gravidez/metabolismo , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Flavonoides , Ligação Proteica
19.
Environ Sci Pollut Res Int ; 30(14): 40563-40575, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36622605

RESUMO

Drought is an extreme climatic event that mostly occurs as a result of low rainfall, which leads to lack of water in various agro-ecological conditions of Pakistan. The condition could be further exacerbated by the prevailing dry weather. Therefore, accurate, timely, and efficient drought monitoring is crucial to ensure that its adverse effects are mitigated. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) and TRMM-based data were used together with remote sensing techniques to improve drought mitigation and disaster risk reduction strategies. In order to monitor drought mitigation and disaster risk reduction strategies in Pakistan, the crop water stress index (CWSI), vegetation condition index (VCI), normalized vegetation supply water index (NVSWI), vegetation health index (VHI), and temperature vegetation drought index (TVDI) were chosen as the instrument. Due to low rainfall and significantly low vegetation, CWSI, NDVI, TVDI, and VHI are useful in characterizing drought mitigation strategies in Pakistan. Monthly NDVI, NAP, NVSWI, TVDI, VCI, and VHI values and heat map analysis show that Pakistan suffered from drought in years 2001, 2002, and 2006. Seasonal CWSI, NDVI, VHI, and TVDI confirmed that Pakistan was affected by severe drought in 2001, which continued and led to severe drought in 2002 and 2006. We generate spatial correlation coefficients between NDVI and NVSWI, VCI, and VHI, and NVSWI and VCI and VHI, while the VCI and VHI values are significantly positively correlated. CWSI, NDVI, VHI, and TVDI show positive signs of effective climate change drought mitigation and disaster risk reduction strategies in Pakistan. Thus, these drought indices have been confirmed to be a complete drought monitoring indicator and reduce the risk of drought in Pakistan.


Assuntos
Secas , Imagens de Satélites , Mudança Climática , Paquistão , Temperatura
20.
J Biol Phys ; 49(1): 29-48, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36662317

RESUMO

Myricetin (MYR) is a bioactive secondary metabolite found in plants that is recognized for its nutraceutical value and is an essential constituent of various foods and beverages. It is reported to exhibit a plethora of activities, including antioxidant, antimicrobial, antidiabetic, anticancer, and anti-inflammatory. Alpha-2-macroglobulin (α2M) is a major plasma anti-proteinase that can inhibit proteinases of both human and non-human origin, regardless of their specificity and catalytic mechanism. Here, we explored the interaction of MYR-α2M using various biochemical and biophysical techniques. It was found that the interaction of MYR brings subtle change in its anti-proteolytic potential and thereby alters its structure and function, as can be seen from absorbance and fluorescence spectroscopy. UV spectroscopy of α2M in presence of MYR indicated the occurrence of hyperchromism, suggesting complex formation. Fluorescence spectroscopy reveals that MYR reduces the fluorescence intensity of native α2M with a shift in the wavelength maxima. At 318.15 K, MYR binds to α2M with a binding constant of 2.4 × 103 M-1, which indicates significant binding. The ΔG value was found to be - 7.56 kcal mol-1 at 298.15 K, suggesting the interaction to be spontaneous and thermodynamically favorable. The secondary structure of α2M does not involve any major change as was confirmed by CD analysis. The molecular docking indicates that Asp-146, Ser-172, Glu-174, and Tyr-180 were the key residues involved in α2M-MYR complex formation. This study contributes to our understanding of the function and mechanism of protein and flavonoid binding by providing a molecular basis of the interaction between MYR and α2M.


Assuntos
alfa 2-Macroglobulinas Associadas à Gravidez , Humanos , Gravidez , Feminino , Simulação de Acoplamento Molecular , alfa 2-Macroglobulinas Associadas à Gravidez/química , alfa 2-Macroglobulinas Associadas à Gravidez/metabolismo , Análise Espectral , Flavonoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA