Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Genet Eng Rev ; 39(1): 118-142, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35876332

RESUMO

Diabetic retinopathy is one of the withering disorders that has been making the lives of patients miserable. Arising as a result of chronic high blood sugar levels in diabetes patients, retinopathy has become a major reason causing permanent blindness, retinal detachment, vitreous humor, rage, or glaucoma among patients. Angiogenesis being the major culprit behind the development of this condition is the growth of new blood vessels from the earlier ones existing. The abnormal growth and poor development of blood vessels also lead to aggravation of the conditions, with vascular endothelial growth factor (VEGF) playing a major role in the process. Various anti-angiogenic therapies or anti-VEGF therapies are being explored for the treatment of this condition. 4 widely explored drugs being-Bevacizumab, pegaptanib sodium, ranibizumab, and aflibercept. The review article tries to summarize studies illustrating the efficacy of these drugs in the treatment of diabetic retinopathy along with some of the herbal therapeutic paradigms displaying anti-angiogenic action that is being used to treat this condition.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Ranibizumab/uso terapêutico , Desenvolvimento de Medicamentos , Proteínas Recombinantes de Fusão/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
2.
J Oncol ; 2022: 9396760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284633

RESUMO

Cancer has been one of the most dominant causes of mortality globally over the last few decades. In cancer treatment, the selective targeting of tumor cells is indispensable, making it a better replacement for conventional chemotherapies by diminishing their adverse side effects. While designing a drug to be delivered selectively in the target organ, the drug development scientists should focus on various factors such as the type of cancer they are dealing with according to which drug, targeting moieties, and pharmaceutical carriers should be targeted. All published articles have been collected regarding cancer and drug-targeting approaches from well reputed databases including MEDLINE, Embase, Cochrane Library, CENTRAL and ClinicalTrials.gov, Science Direct, PubMed, Scopus, Wiley, and Springer. The articles published between January 2010 and December 2020 were considered. Due to the existence of various mechanisms, it is challenging to choose which one is appropriate for a specific case. Moreover, a combination of more than one approach is often utilized to achieve optimal drug effects. In this review, we have summarized and highlighted central mechanisms of how the targeted drug delivery system works in the specific diseased microenvironment, along with the strategies to make an approach more effective. We have also included some pictorial illustrations to have a precise idea about different types of drug targeting. The core contribution of this work includes providing a cancer drug development scientist with a broad preliminary idea to choose the appropriate approach among the various targeted drug delivery mechanisms. Also, the study will contribute to improving anticancer treatment approaches by providing a pathway for lesser side effects observed in conventional chemotherapeutic techniques.

3.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144735

RESUMO

Dipeptidyl peptidase-IV (DPP-IV) inhibitors, often known as gliptins, have been used to treat type 2 diabetes mellitus (T2DM). They may be combined with other medications as an additional treatment or used alone as a monotherapy. In addition to insulin, sulfonylureas, thiazolidinediones, and metformin, these molecules appear as possible therapeutic options. Oxadiazole rings have been employed in numerous different ways during drug development efforts. It has been shown that including them in the pharmacophore increases the amount of ligand that may be bound. The exceptional hydrogen bond acceptor properties of oxadiazoles and the distinct hydrocarbon bonding potential of their regioisomers have been established. Beside their anti-diabetic effects, oxadiazoles display a wide range of pharmacological properties. In this study, we made the assumption that molecules containing oxadiazole rings may afford a different approach to the treatment of diabetes, not only for controlling glycemic levels but also for preventing atherosclerosis progression and other complications associated with diabetes. It was observed that oxadiazole fusion with benzothiazole, 5-(2,5,2-trifluoroethoxy) phenyl, ß-homophenylalanine, 2-methyl-2-{5-(4-chlorophenyl), diamine-bridged bis-coumarinyl, 5-aryl-2-(6'-nitrobenzofuran-2'-yl), nitrobenzofuran, and/or oxindole leads to potential anti-diabetic activity.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Metformina , Tiazolidinedionas , Benzotiazóis/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diaminas , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Dipeptidil Peptidases e Tripeptidil Peptidases , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Ligantes , Metformina/uso terapêutico , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Oxindóis , Tiazolidinedionas/uso terapêutico
4.
Polymers (Basel) ; 14(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36145936

RESUMO

This review's objectives are to provide an overview of the various kinds of biopolymer hydrogels that are currently used for bone tissue and periodontal tissue regeneration, to list the advantages and disadvantages of using them, to assess how well they might be used for nanoscale fabrication and biofunctionalization, and to describe their production processes and processes for functionalization with active biomolecules. They are applied in conjunction with other materials (such as microparticles (MPs) and nanoparticles (NPs)) and other novel techniques to replicate physiological bone generation more faithfully. Enhancing the biocompatibility of hydrogels created from blends of natural and synthetic biopolymers can result in the creation of the best scaffold match to the extracellular matrix (ECM) for bone and periodontal tissue regeneration. Additionally, adding various nanoparticles can increase the scaffold hydrogel stability and provide a number of biological effects. In this review, the research study of polysaccharide hydrogel as a scaffold will be critical in creating valuable materials for effective bone tissue regeneration, with a future impact predicted in repairing bone defects.

5.
Biomed Res Int ; 2022: 7265445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968239

RESUMO

Scutellaria (Lamiaceae), which contains over 350 species, usually known as skullcaps, is found throughout Europe, the United States, and East Asia. In traditional Chinese medicine, several species are used to wipe out heat-evil and remove surface ills (TCM). The current study examines the ethnopharmacology, biological activity, and chemical substances associated with Scutellaria species. More than 295 chemicals, including flavonoids and diterpenes, have been identified. Scutellaria and its active principles have been shown in studies to have a wide range of pharmacological activities, including antioxidant, antimicrobial, antifeedant, phytotoxic, acaricidal toxicity, antibacterial, anti-inflammatory, and antianalgesic activities. Currently, effective monomeric compounds or active components from Scutellaria have been evaluated for pharmacological action in vivo and in vitro. More data facilitates applications and exploitation of novel medication development.


Assuntos
Lamiaceae , Óleos Voláteis , Scutellaria , Etnofarmacologia , Medicina Tradicional Chinesa , Óleos Voláteis/farmacologia , Scutellaria/química
6.
Materials (Basel) ; 15(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955327

RESUMO

Water contamination is one of the most urgent concerns confronting the world today. Heavy metal poisoning of aquatic systems has piqued the interest of various researchers due to the high toxicity and carcinogenic consequences it has on living organisms. Due to their exceptional attributes such as strong reactivity, huge surface area, and outstanding mechanical properties, nanomaterials are being produced and employed in water treatment. In this review, recent advances in the use of nanomaterials in nanoadsorptive membrane systems for wastewater treatment and heavy metal removal are extensively discussed. These materials include carbon-based nanostructures, metal nanoparticles, metal oxide nanoparticles, nanocomposites, and layered double hydroxide-based compounds. Furthermore, the relevant properties of the nanostructures and the implications on their performance for water treatment and contamination removal are highlighted. The hydrophilicity, pore size, skin thickness, porosity, and surface roughness of these nanostructures can help the water permeability of the nanoadsorptive membrane. Other properties such as surface charge modification and mechanical strength can improve the metal adsorption effectiveness of nanoadsorptive membranes during wastewater treatment. Various nanocomposite membrane fabrication techniques are also reviewed. This study is important because it gives important information on the roles of nanomaterials and nanostructures in heavy metal removal and wastewater treatment.

7.
Polymers (Basel) ; 14(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956708

RESUMO

Chitosan is a natural anionic polysaccharide with a changeable architecture and an abundance of functional groups; in addition, it can be converted into various shapes and sizes, making it appropriate for a variety of applications. This article examined and summarized current developments in chitosan-based materials, with a focus on the modification of chitosan, and presented an abundance of information about the fabrication and use of chitosan-derived products in periodontal regeneration. Numerous preparation and modification techniques for enhancing chitosan performance, as well as the uses of chitosan and its metabolites, were reviewed critically and discussed in depth in this study. Chitosan-based products may be formed into different shapes and sizes, considering fibers, nanostructures, gels, membranes, and hydrogels. Various drug-loaded chitosan devices were discussed regarding periodontal regeneration.

8.
Molecules ; 27(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889532

RESUMO

A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and the various physiological conditions are difficult to diagnose, the success rate of BT is not very high. This is the central issue faced during drug development and clinical trials with almost all types of neurodegenerative disorders. In the first part of this review, we focus on the concept of brain tumors, their barriers, and the types of delivery possible to target the brain cells. Although various treatment methods are available, they all have side effects or toxic effects. Hence, in the second part, a correlation was made between the use of resveratrol, a potent antioxidant, and its advantages for brain diseases. The relationship between brain disease and the blood-brain barrier, multi-drug resistance, and the use of nanomedicine for treating brain disorders is also mentioned. In short, a hypothetical concept is given with a background investigation into the use of combination therapy with resveratrol as an active ingredient, the possible drug delivery, and its formulation-based approach.


Assuntos
Neoplasias Encefálicas , Estilbenos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Encéfalo , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Preparações Farmacêuticas , Resveratrol/uso terapêutico , Estilbenos/farmacologia , Estilbenos/uso terapêutico
9.
Polymers (Basel) ; 14(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890740

RESUMO

Bone and periodontium are tissues that have a unique capacity to repair from harm. However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult as the defect grows larger. Because of aging and the increased prevalence of debilitating disorders such as diabetes, there is a considerable increase in demand for orthopedic and periodontal surgical operations, and successful techniques for tissue regeneration are still required. Even with significant limitations, such as quantity and the need for a donor area, autogenous bone grafts remain the best solution. Topical administration methods integrate osteoconductive biomaterial and osteoinductive chemicals as hormones as alternative options. This is a promising method for removing the need for autogenous bone transplantation. Furthermore, despite enormous investigation, there is currently no single approach that can reproduce all the physiologic activities of autogenous bone transplants. The localized bioengineering technique uses biomaterials to administer different hormones to capitalize on the host's regeneration capacity and capability, as well as resemble intrinsic therapy. The current study adds to the comprehension of the principle of hormone redirection and its local administration in both bone and periodontal tissue engineering.

10.
Life (Basel) ; 12(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743927

RESUMO

P-glycoprotein (P-gp) is a major factor in the multidrug resistance phenotype in cancer cells. P-gp is a protein that regulates the ATP-dependent efflux of a wide range of anticancer medicines and confers resistance. Due to its wide specificity, several attempts have been made to block the action of P-gp to restore the efficacy of anticancer drugs. The major goal has been to create molecules that either compete with anticancer medicines for transport or function as a direct P-gp inhibitor. Despite significant in vitro success, there are presently no drugs available in the clinic that can "block" P-gp-mediated resistance. Toxicity, unfavourable pharmacological interactions, and a variety of pharmacokinetic difficulties might all be the reason for the failure. On the other hand, P-gp has a significant effect in the body. It protects the vital organs from the entry of foreign bodies and other toxic chemicals. Hence, the inhibitors of P-gp should not hinder its action in the normal cells. To develop an effective inhibitor of P-gp, thorough background knowledge is needed in this field. The main aim of this review article was to set forth the merits and demerits of the action of P-gp on cancer cells as well as on normal cells. The influence of P-gp on cancer drug delivery and the contribution of P-gp to activating drug resistance were also mentioned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...