Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(8): 472, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819545

RESUMO

UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is an essential cytosolic enzyme in the biosynthesis of peptidoglycan. It becomes a potential bacterial target for screening promising antibacterial compounds as it is associated with the early phases of peptidoglycan production. MurA enzyme is conserved and necessary for bacterial viability with no mammalian homolog, which is a well-proven therapeutic research target. The present study reports the natural compounds from Boswellia serrata targeting the MurA enzyme. The identified inhibitors against MurA Escherichia coli (E. coli): ß-boswellic acid (IC50 33.65 µM), Acetyl-ß-boswellic acid (IC50 30.17 µM), and Acetyl-11-keto-ß-boswellic acid (IC50 37.67 µM). Inhibitors showed a fourfold decrease in IC50 values on pre-incubation with substrate-UDP-N-acetyl-glucosamine (UDP-GlcNAc). Mode-of-inhibition studies revealed their uncompetitive nature with both the substrates. Although these boswellic acids have been explored for their pharmacological potential, this is the first study reporting these compounds' E. coli MurA inhibiting potential.


Assuntos
Alquil e Aril Transferases , Peptidoglicano , Acetilglucosamina , Escherichia coli/genética , Triterpenos , Difosfato de Uridina
2.
Appl Microbiol Biotechnol ; 105(9): 3611-3623, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33860835

RESUMO

Bacterial cell has always been an attractive target for anti-infective drug discovery. MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) enzyme of Escherichia coli (E.coli) is crucial for peptidoglycan biosynthetic pathway, as it is involved in the early stages of bacterial cell wall biosynthesis. In the present study we aim to identify novel chemical structures targeting the MurA enzyme. For screening purpose, we used in silico approach (pharmacophore based strategy) for 52,026 library compounds (Chembridge, Chemdiv and in house synthetics) which resulted in identification of 50 compounds. These compounds were screened in vitro against MurA enzyme and release of inorganic phosphate (Pi) was estimated. Two compounds (IN00152 and IN00156) were found to inhibit MurA enzyme > 70% in primary screening and IC50 of 14.03 to 32.30 µM respectively. These two hits were further evaluated for their mode of inhibition studies and whole-cell activity where we observed 2-4 folds increase in activity in presence of Permeabilizer EDTA (Ethylenediaminetetraacetic acid). Combination studies were also performed with known antibiotics in presence of EDTA. Hits are reported for the first time against this target and our report also support the use of OM permeabilizer in combination with antibacterial compounds to address the permeability and efficacy issue. These lead hits can be further optimized for drug discovery. KEY POINTS: • Emerging Gram negative resistant strains is a matter of concern. • Need for new screening strategies to cope with drying up antibiotics pipeline. • Outer membrane permeabilizers could be useful to improve potency of molecules to reach its target.


Assuntos
Alquil e Aril Transferases , Escherichia coli , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Peptidoglicano
4.
Mol Divers ; 19(4): 1003-19, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26232029

RESUMO

Mycobacterium tuberculosis bacteria cause deadly infections in patients [Corrected]. The rise of multidrug resistance associated with tuberculosis further makes the situation worse in treating the disease. M. tuberculosis proteasome is necessary for the pathogenesis of the bacterium validated as an anti-tubercular target, thus making it an attractive enzyme for designing Mtb inhibitors. In this study, a computational screening approach was applied to identify new proteasome inhibitor candidates from a library of 50,000 compounds. This chemical library was procured from the ChemBridge (20,000 compounds) and the ChemDiv (30,000 compounds) databases. After a detailed analysis of the computational screening results, 50 in silico hits were retrieved and tested in vitro finding 15 compounds with IC50 values ranging from 35.32 to 64.15 µM on lysate. A structural analysis of these hits revealed that 14 of these compounds probably have non-covalent mode of binding to the target and have not reported for anti-tubercular or anti-proteasome activity. The binding interactions of all the 14 protein-inhibitor complexes were analyzed using molecular docking studies. Further, molecular dynamics simulations of the protein in complex with the two most promising hits were carried out so as to identify the key interactions and validate the structural stability.


Assuntos
Antituberculosos/química , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteassoma/química , Bibliotecas de Moléculas Pequenas/química , Antituberculosos/farmacologia , Biologia Computacional/métodos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Inibidores de Proteassoma/farmacologia , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Appl Microbiol Biotechnol ; 86(6): 1821-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20054535

RESUMO

The increasing demand for novel biocatalysts stimulates exploration of resources from soil. Metagenomics, a culture independent approach, represent a sheer unlimited resource for discovery of novel biocatalysts from uncultured microorganisms. In this study, a soil-derived metagenomic library containing 90,700 recombinants was constructed and screened for lipase, cellulase, protease and amylase activity. A gene (pAMY) of 909 bp encoding for amylase was found after the screening of 35,000 Escherichia coli clones. Amino acid sequence comparison and phylogenetic analysis indicated that pAMY was closely related to uncultured bacteria. The molecular mass of pAMY was estimated about 38 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Amylase activity was determined using soluble starch, amylose, glycogen and maltose as substrates. The maximal activity (2.46 U/mg) was observed at 40 degrees C under nearly neutral pH conditions with amylose; whereas it retains 90% of its activity at low temperature with all the substrates used in this study. The ability of pAMY to work at low temperature is unique for amylases reported so far from microbes of cultured and uncultured division.


Assuntos
Amilases/genética , Amilases/metabolismo , Bactérias/enzimologia , Bactérias/genética , Biblioteca Genômica , Metagenoma , Microbiologia do Solo , Sequência de Aminoácidos , Amilases/química , Sequência de Bases , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Índia , Lipase/química , Lipase/genética , Lipase/metabolismo , Metais/farmacologia , Dados de Sequência Molecular , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA