Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(19): 27688-27701, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988057

RESUMO

We demonstrate an improvement in the photoresponse characteristics of ultraviolet (UV) photodetectors (PDs) using the N2O plasma-treated ZnO nanorod (NR) gated AlGaN/GaN high electron mobility transistor (HEMT) structure. The PDs fabricated with ZnO NRs plasma-treated for 6 min show superior performance in terms of responsivity (∼1.54×10 5 A/W), specific detectivity (∼ 4.7×1013 cm·Hz-1/2/W), and on/off current ratio (∼40). These improved performance parameters are the best among those from HEMT-based PDs reported to date. Photoluminescence analysis shows a significant enhancement in near band edge emission due to the effective suppression of native defects near the surface of ZnO NRs after plasma treatment. As our X-ray photoelectron spectroscopy reveals a very high O/Zn ratio of ∼0.96 from the NR samples plasma-treated for 6 min, the N2O plasma radicals also show a clear impact on ZnO stoichiometry. From our X-ray diffraction analysis, the plasma-treated ZnO NRs show much greater improvement in (002) peak intensity and degree of (002) orientation (∼0.996) than those of as-grown NRs. This significant enhancement in (002) degree of orientation and stoichiometry in ZnO nano-crystals contribute to the enhancement in photoresponse characteristics of the PDs.

2.
Dalton Trans ; 49(29): 10017-10027, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32643710

RESUMO

Vertical integration of two dimensional (2D) layered materials is indispensable in making van der Waals (vdWs) heterostructures for promising electronic and optoelectronic devices. Herein, we report excellent electrical and photoelectrical measurements where the current ON & OFF ratio of FET is increased by decreasing the temperature in the graphene/ReSe2/graphene heterojunction. We investigated the photoresponsivity in broad spectral range (UV-Vis-NIR) and achieved high photoresponsivity of 1.5 × 107 A W-1 and external quantum efficiency of ∼64% at λ = 220 nm. Further, the photovoltaic effect was examined, which significantly modulated the short circuit current (Isc) from 4.2 × 10-8 A to 2.6 × 10-7 A and open-circuit voltage (Voc) from 0.21 V to 0.44 V at different wavelengths (1064, 840, 514 and 220 nm), attributed to the photo-generation and recombination rate of the carriers. Moreover, photoresponsivity was observed near 1.2 × 106, 8.6 × 106 and 1.5 × 107 A W-1 by applying different gate biases (0, 20 and 40 V), respectively. Further, we have explored the photocurrent and photoresponsivity at different intensities of incident light (200, 260, 400, 620 and 850 µW cm-2). In addition, we calculated the rise and decay response times of photodetectors at different wavelengths and power densities, which depend upon the trap sites in the energy band of ReSe2. These devices opened up new ways to improve the performance of photodetectors from the UV to the NIR region.

3.
Nanomaterials (Basel) ; 10(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585985

RESUMO

A growth scheme at a low processing temperature for high crystalline-quality of ZnO nanostructures can be a prime stepping stone for the future of various optoelectronic devices manufactured on transparent plastic substrates. In this study, ZnO nanorods (NRs) grown by the hydrothermal method at 150 °C through doping of transition metals (TMs), such as Co, Ni, or Co-plus-Ni, on polyethylene terephthalate substrates were investigated by various surface analysis methods. The TM dopants in ZnO NRs suppressed the density of various native defect-states as revealed by our photoluminescence and X-ray photoelectron spectroscopy analysis. Further investigation also showed the doping into ZnO NRs brought about a clear improvement in carrier mobility from 0.81 to 3.95 cm2/V-s as well as significant recovery in stoichiometric contents of oxygen. Ultra-violet photodetectors fabricated with Co-plus-Ni codoped NRs grown on an interdigitated electrode structure exhibited a high spectral response of ~137 A/W, on/off current ratio of ~135, and an improvement in transient response speed with rise-up and fall-down times of ~2.2 and ~3.1 s, respectively.

4.
Nanomaterials (Basel) ; 9(8)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349615

RESUMO

As a developing technology for flexible electronic device fabrication, ultra-violet (UV) photodetectors (PDs) based on a ZnO nanostructure are an effective approach for large-area integration of sensors on nonconventional substrates, such as plastic or paper. However, photoconductive ZnO nanorods grown on flexible substrates have slow responses or recovery as well as low spectral responsivity R because of the native defects and inferior crystallinity of hydrothermally grown ZnO nanorods at low temperatures. In this study, ZnO nanorod crystallites are doped with Cu or Ni/Cu when grown on polyethylene terephthalate (PET) substrates in an attempt to improve the performance of flexible PDs. The doping with Ni/Cu or Cu not only improves the crystalline quality but also significantly suppresses the density of deep-level emission defects in as-grown ZnO nanorods, as demonstrated by X-ray diffraction and photoluminescence. Furthermore, the X-ray photoelectron spectroscopy analysis shows that doping with the transition metals significantly increases the oxygen bonding with metal ions with enhanced O/Zn stoichiometry in as-grown nanorods. The fabricated flexible PD devices based on an interdigitated electrode structure demonstrates a very high R of ~123 A/W, a high on-off current ratio of ~130, and a significant improvement in transient response speed exhibiting rise and fall time of ~8 and ~3 s, respectively, by using the ZnO nanorods codoped by Ni/Cu.

5.
Nanomaterials (Basel) ; 9(3)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875973

RESUMO

Owing to their intrinsic wide bandgap properties ZnO and GaN materials are widely used for fabricating passive-type visible-blind ultraviolet (UV) photodetectors (PDs). However, most of these PDs have a very low spectral responsivity R, which is not sufficient for detecting very low-level UV signals. We demonstrate an active type UV PD with a ZnO nanorod (NR) structure for the floating gate of AlGaN/GaN high electron mobility transistor (HEMT), where the AlGaN/GaN epitaxial layers are isolated by the nano-scale fins (NFIs) of two different fin widths (70 and 80 nm). In the dark condition, oxygen adsorbed at the surface of the ZnO NRs generates negative gate potential. Upon UV light illumination, the negative charge on the ZnO NRs is reduced due to desorption of oxygen, and this reversible process controls the source-drain carrier transport property of HEMT based PDs. The NFI PDs of a 70 nm fin width show the highest R of a ~3.2 × 107 A/W at 340 nm wavelength among the solid-state UV PDs reported to date. We also compare the performances of NFI PDs with those of conventional mesa isolation (MI, 40 × 100 µm²). NFI devices show ~100 times enhanced R and on-off current ratio than those of MI devices. Due to the volume effect of the small active region, a much faster response speed (rise-up and fall-off times of 0.21 and 1.05 s) is also obtained from the NFI PDs with a 70 nm fin width upon the UV on-off transient.

6.
Nanomaterials (Basel) ; 8(6)2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29861429

RESUMO

We examined the influence of O2 plasma treatment for the ZnO seed layer (SL) crystallites on the material characteristics of ZnO nanorods (NRs) synthesized by the hydrothermal method. Diode photocurrent and photo-response transient characteristics of the p-Si/n-ZnO-NR heterojunction-based ultraviolet (UV) photodetectors were also examined according to the plasma treatment for the SLs. The superior optical properties of NRs were measured from the photoluminescence by exhibiting 4.6 times greater near-band edge emission when grown on the O2-plasma-treated SL. The degree of (002) orientation of the NR crystals was improved from 0.67 to 0.95, as revealed by X-ray diffraction analysis, and a higher NR surface density of ~80 rods/µm² with a smaller mean diameter of 65 nm were also observed by the SL modification using plasma-treatment. It was shown by X-ray photo-electron spectroscopy that this improvement of NR crystalline quality was due to the recovery of stoichiometric oxygen with significant reduction of oxygenated impurities in the SL crystals and the subsequent low-energy growth mode for the NRs. UV PDs fabricated by the proposed SL plasma treatment technique showed significantly enhanced UV-to-dark current ratio from 2.0 to 83.7 at a forward bias of +5 V and faster photo-response characteristics showing the reduction in recovery time from 16 s to 9 s.

7.
Nanomaterials (Basel) ; 8(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373523

RESUMO

In this study, the ambient condition for the as-coated seed layer (SL) annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs). The NR crystals of high surface density (~240 rods/µm²) and aspect ratio (~20.3) show greatly enhanced (002) degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002) and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360-400 nm) of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors.

8.
Nanotechnology ; 28(17): 175402, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28278133

RESUMO

Recently, many researchers have been paying attention to nanogenerators (NGs) as energy sources for self-powered mirco-nano systems, and studying how to achieve their higher power generation. Hence, we propose a hybrid-type NG for harvesting both the piezoelectric and triboelectric effect simultaneously. In the proposed hybrid NG, the piezoelectric NG (PNG) and triboelectric NG (TENG) are fabricated using polydimethylsiloxane (PDMS) and perovskite zinc stannite (ZnSnO3) nanocubes with a high charge polarization of 59 uC cm-2 composite (PDMS + ZnSnO3) and UV surface-treated PDMS, respectively. To effectively combine a high output current of PNG and a high voltage of TENG, these two NGs are stacked upon each other, and separated by sponge spacers providing a uniform air gap for the triboelectric effect. In particular, this fabricated structure has a low Young's modulus for piezoelectricity. The proposed hybrid NG device effectively achieves a combined peak voltage of 300 V on an open circuit, a power density of 10.41 mW cm-2 at 1 MΩ load, and a maximum short circuit current density of 16 mA cm-2 at 50 Ω load. It is feasible that the proposed NG can be utilized as a source for various self-powered systems.

9.
ScientificWorldJournal ; 2014: 458789, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24688388

RESUMO

Central composite design methodology has been employed to model the sludge yield data obtained during liquid-liquid extractive rerefining of spent lubricants using an alcohol (1-butanol) and a ketone (methyl ethyl ketone) as prospective solvents. The study has resulted in two reasonably accurate multivariate process models that relate the sludge yield (R (2) = 0.9065 and 0.9072 for alcohol and ketone, resp.) to process variables (settling time t, operating temperature T, and oil to solvent ratio r). Construction of such models has allowed the maximization of the sludge yield (more than 8% and 3% in case of alcohol and ketone, resp.) so that the extraction of useable oil components from spent lubricants can economically be performed under extremely mild conditions (t = 16.7 h, T = 10°C, and r = 2) and fairly moderate conditions (t = 26.6 h, T = 10°C, and r = 5) established for the alcohol and ketone correspondingly. Based on these performance parameters alcohol appears to be superior over ketone for this extraction process. Additionally extractive treatment results in oil stocks with lesser quantity of environmentally hazardous polyaromatic hydrocarbons that are largely left in the separated sludge.


Assuntos
Extração Líquido-Líquido/métodos , Lubrificantes/química , Modelos Químicos , 1-Butanol , Butanonas/química , Análise Multivariada , Análise de Regressão , Esgotos , Solventes , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...