Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 23052, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155178

RESUMO

This research work investigates the axial stress versus strain responses of un-strengthened and carbon fiber reinforced polymer (CFRP) composites strengthened concrete specimens made with electronic waste coarse aggregates. For this purpose, 36 circular and non-circular 300 mm high concrete specimens constrained with CFRP sheets and partially replaced with E-waste coarse aggregates were prepared. The effect of cross-sectional geometry, 20% partial substitution of natural coarse aggregates with E-waste aggregates, corner effect of non-circular concrete specimens, confinement of specimens with CFRP sheets, and effect of the number of confinement sheets were also studied. In control concrete specimens, the coarse aggregates were 848 kg/m3 and E-waste aggregates were 212 kg/m3. The cement was 475 kg/m3 and fine aggregates were 655 kg/m3. Test results indicated that compressive strength is reduced by substituting natural coarse aggregates with E-waste aggregates. At the same time, compressive strength increased to 71%, 33%, and 25% for circular, square, and rectangular concrete specimens, respectively, by CFRP confinement. Whereas the axial strain increased to 1100%, 250%, and 133%, for circular, square, and rectangular concrete specimens, respectively, by CFRP confinement. CFRP sheets also enhanced the Poisson's ratio. Because of the greater confinement given by a double CFRP layer, it is more effective than a single layer. Furthermore, results also indicated that strength reduction in non-circular concrete specimens was greater than in circular concrete specimens for all studied cases. In the end, for theoretical calculations, strength and strain models for confined concrete suggested by different researchers were applied and compared with experimental results. In comparison to the experimental findings, theoretical data showed that most of the models were either on the higher or on the lower side, while only some model results matched well with the experimental data.

2.
Sci Rep ; 13(1): 15733, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735174

RESUMO

This study presents an experimental and finite element analysis of reinforced concrete beams with solid, hollow, prismatic, or non-prismatic sections. In the first part, a total of six beams were tested under four-point monotonic bending. The test matrix was designed to provide a comparison of structural behavior between prismatic solid and hollow section beams, prismatic solid and non-prismatic solid section beams, and prismatic hollow and non-prismatic hollow section beams. The intensity of shear was maximum in the case of prismatic section beams. The inclusion of a tapered section lowered the demand for shear. In the second part, Nonlinear Finite Element Modeling was performed by using ATENA. The adopted modeling strategy resulted in close agreement with experimental crack patterns at ultimate failure. However, the ultimate failure loads predicted by nonlinear modeling were generally higher than their corresponding experimental results. Whereas in the last part, the developed models were further extended to investigate the effect of the strength of concrete and ratio of longitudinal steel bars on the ultimate load-carrying capacity and cracking behavior of the reinforced concrete beams with solid, hollow, prismatic, or non-prismatic sections. The ultimate loads for each beam predicted by the model were found to be in close agreement with experimental results. Nonlinear modeling was further extended to assess the effects of concrete strength and longitudinal reinforcement ratio on failure patterns and ultimate loads. The parametric study involved beams reinforced with glass fiber-reinforced polymer (GFRP) bars against shear and flexural failure. In terms of ultimate load capacities, diagonal cracking, and flexural cracking, beams strengthened with GFRP bars demonstrated comparable performance to the beams strengthened with steel bars.

3.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420574

RESUMO

This study investigated the influence of CFRP composite wrapping techniques on the load-deflection and strain relationships of non-prismatic RC beams. A total of twelve non-prismatic beams with and without openings were tested in the present study. The length of the non-prismatic section was also varied to assess the effect on the behavior and load capacity of non-prismatic beams. The strengthening of beams was performed by using carbon fiber-reinforced polymer (CFRP) composites in the form of individual strips or full wraps. The linear variable differential transducers and strain gauges were installed at the steel bars to observe the load-deflection and strain responses of non-prismatic RC beams, respectively. The cracking behavior of unstrengthened beams was accompanied by excessive flexural and shear cracks. The influence of CFRP strips and full wraps was primarily observed in solid section beams without shear cracks, resulting in enhanced performance. In contrast, hollow section strengthened beams exhibited minor shear cracks alongside the primary flexural cracks within the constant moment region. The absence of shear cracks was reflected in the load-deflection curves of strengthened beams, which demonstrated a ductile behavior. The strengthened beams demonstrated 40% to 70% higher peak loads than control beams, whereas the ultimate deflection was increased up to 524.87% compared to that of the control beams. The improvement in the peak load was more prominent as the length of the non-prismatic section increased. A better improvement in ductility was achieved for the case of CFRP strips in the case of short non-prismatic lengths, whereas the efficiency of CFRP strips was reduced as the length of the non-prismatic section increased. Moreover, the load-strain capacity of CFRP-strengthened non-prismatic RC beams was higher than the control beams.


Assuntos
Plásticos , Polímeros , Fibra de Carbono , Suporte de Carga
4.
Heliyon ; 9(5): e16288, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37234626

RESUMO

This study utilized both experimental testing and machine learning (ML) strategies to assess the effectiveness of waste glass powder (WGP) on the compressive strength (CS) of cement mortar. The cement-to-sand ratio was kept 1:1 with a water-to-cement ratio of 0.25. The superplasticizer content was 4% by cement mass, and the proportion of silica fume was 15%, 20%, and 25% by cement mass in three different mixes. WGP was added to cement mortar at replacement contents from 0 to 15% for sand and cement with a 2.5% increment. Initially, using an experimental method, the CS of WGP-based cement mortar at the age of 28 days was calculated. The obtained data were then used to forecast the CS using ML techniques. For CS estimation, two ML approaches, namely decision tree and AdaBoost, were applied. The ML model's performance was assessed by calculating the coefficient of determination (R2), performing statistical tests and k-fold validation, and assessing the variance between the experimental and model outcomes. The use of WGP enhanced the CS of cement mortar, as noted from the experimental results. Maximum CS was attained by substituting 10% WGP for cement and 15% WGP for sand. The findings of the modeling techniques demonstrated that the decision tree had a reasonable level of accuracy, while the AdaBoost predicted the CS of WGP-based cement mortar with a higher level of accuracy. Utilizing ML approaches will benefit the construction industry by providing efficient and economic approaches for assessing the properties of materials.

5.
PLoS One ; 18(4): e0284761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093880

RESUMO

This study conducted experimental and machine learning (ML) modeling approaches to investigate the impact of using recycled glass powder in cement mortar in an acidic environment. Mortar samples were prepared by partially replacing cement and sand with glass powder at various percentages (from 0% to 15%, in 2.5% increments), which were immersed in a 5% sulphuric acid solution. Compressive strength (CS) tests were conducted before and after the acid attack for each mix. To create ML-based prediction models, such as bagging regressor and random forest, for the CS prediction following the acid attack, the dataset produced through testing methods was utilized. The test results indicated that the CS loss of the cement mortar might be reduced by utilizing glass powder. For maximum resistance to acidic conditions, the optimum proportion of glass powder was noted to be 10% as cement, which restricted the CS loss to 5.54%, and 15% as a sand replacement, which restricted the CS loss to 4.48%, compared to the same mix poured in plain water. The built ML models also agreed well with the test findings and could be utilized to calculate the CS of cementitious composites incorporating glass powder after the acid attack. On the basis of the R2 value (random forest: 0.97 and bagging regressor: 0.96), the variance between tests and forecasted results, and errors assessment, it was found that the performance of both the bagging regressor and random forest models was similarly accurate.


Assuntos
Cimentos Ósseos , Areia , Força Compressiva , Vidro , Cimentos de Ionômeros de Vidro , Pós
6.
Micromachines (Basel) ; 14(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677253

RESUMO

Porous carbons are highly attractive and demanding materials which could be prepared using biomass waste; thus, they are promising for enhanced electrochemical capacitive performance in capacitors and cycling efficiency in Li-ion batteries. Herein, biomass (rice husk)-derived activated carbon was synthesized via a facile chemical route and used as anode materials for Li-ion batteries. Various characterization techniques were used to study the structural and morphological properties of the prepared activated carbon. The prepared activated carbon possessed a carbon structure with a certain degree of amorphousness. The morphology of the activated carbon was of spherical shape with a particle size of ~40-90 nm. Raman studies revealed the characteristic peaks of carbon present in the prepared activated carbon. The electrochemical studies evaluated for the fabricated coin cell with the activated carbon anode showed that the cell delivered a discharge capacity of ~321 mAhg-1 at a current density of 100 mAg-1 for the first cycle, and maintained a capacity of ~253 mAhg-1 for 400 cycles. The capacity retention was found to be higher (~81%) with 92.3% coulombic efficiency even after 400 cycles, which showed excellent cyclic reversibility and stability compared to commercial activated carbon. These results allow the waste biomass-derived anode to overcome the problem of cyclic stability and capacity performance. This study provides an insight for the fabrication of anodes from the rice husk which can be redirected into creating valuable renewable energy storage devices in the future, and the product could be a socially and ethically acceptable product.

7.
PLoS One ; 18(1): e0280761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689541

RESUMO

Using solid waste in building materials is an efficient approach to achieving sustainability goals. Also, the application of modern methods like artificial intelligence is gaining attention. In this regard, the flexural strength (FS) of cementitious composites (CCs) incorporating waste glass powder (WGP) was evaluated via both experimental and machine learning (ML) methods. WGP was utilized to partially substitute cement and fine aggregate separately at replacement levels of 0%, 2.5%, 5%, 7.5%, 10%, 12.5%, and 15%. At first, the FS of WGP-based CCs was determined experimentally. The generated data, which included six inputs, was then used to run ML techniques to forecast the FS. For FS estimation, two ML approaches were used, including a support vector machine and a bagging regressor. The effectiveness of ML models was assessed by the coefficient of determination (R2), k-fold techniques, statistical tests, and examining the variation amongst experimental and forecasted FS. The use of WGP improved the FS of CCs, as determined by the experimental results. The highest FS was obtained when 10% and 15% WGP was utilized as a cement and fine aggregate replacement, respectively. The modeling approaches' results revealed that the support vector machine method had a fair level of accuracy, but the bagging regressor method had a greater level of accuracy in estimating the FS. Using ML strategies will benefit the building industry by expediting cost-effective and rapid solutions for analyzing material characteristics.


Assuntos
Inteligência Artificial , Resistência à Flexão , Pós , Materiais de Construção , Cimentos de Ionômeros de Vidro , Aprendizado de Máquina
8.
Polymers (Basel) ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433135

RESUMO

This study examined the bibliographic data on fiber-reinforced geopolymers (FRGPs) using scientometrics to determine their important features. Manual review articles are inadequate in their capability to connect various segments of literature in an ordered and systematic manner. Scientific mapping, co-citation, and co-occurrence are the difficult aspects of current research. The Scopus database was utilized to find and obtain the data needed to achieve the study's aims. The VOSviewer application was employed to assess the literature records from 751 publications, including citation, bibliographic, keyword, and abstract details. Significant publishing outlets, keywords, prolific researchers in terms of citations and articles published, top-cited documents, and locations actively participating in FRGP investigations were identified during the data review. The possible uses of FRGP were also highlighted. The scientometric analysis revealed that the most frequently used keywords in FRGP research are inorganic polymers, geopolymers, reinforcement, geopolymer, and compressive strength. Additionally, 27 authors have published more than 10 articles on FRGP, and 29 articles have received more than 100 citations up to June 2022. Due to the graphical illustration and quantitative contribution of scholars and countries, this study can support scholars in building joint ventures and communicating innovative ideas and practices.

9.
Materials (Basel) ; 15(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36431354

RESUMO

Due to the increasing prices of cement and its harmful effect on the environment, the use of cement has become highly unsustainable in concrete. There is a considerable need for promoting the use of cement replacement materials. This study investigates the effect of variable percentages of metakaolin (MK) on the mechanical and durability performance of concrete. Kaolin clay (KC) was used in the current research to prepare the MK by the calcination process; it was ground in a ball mill to its maximum achievable fineness value of 2550 m2/Kg. Four replacement levels of MK, i.e., 5%, 10%, 15%, and 20% by weight of cement, in addition to control samples, at a constant water-to-cement (w/c) ratio of 0.55 were used. For evaluating the mechanical and durability performance, 27 cubes (6 in. × 6 in. × 6 in.) and 6 cylinders (3.875 in. diameter, 2 in. height) were cast for each mix. These samples were tested for compressive strength under standard conditions and in an acidic environment, in addition to being subjected to water permeability, sorptivity, and water absorption tests. Chemical analysis revealed that MK could be used as pozzolana as per the American Society for Testing and Materials (ASTM C 618:2003). The results demonstrated an increased compressive strength of concrete owing to an increased percentage of MK in the mix with aging. In particular, the concrete having 20% MK after curing under standard conditions exhibited 33.43% higher compressive strength at 90 days as compared to similarly aged control concrete. However, with increasing MK, the workability of concrete decreased drastically. After being subjected to an acid attack (immersing concrete cubes in 2% sulfuric acid solution), the samples exhibited a significant decrease in compressive strength at 90 days in comparison to those without acid attack at the same age. The density of acid attack increased with increasing MK with a maximum corresponding to 5% MK concrete. The current findings suggest that the local MK has the potential to produce good-quality concrete in a normal environment.

10.
Materials (Basel) ; 15(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36363008

RESUMO

The use of superabsorbent polymers, sometimes known as SAP, is a tremendously efficacious method for reducing the amount of autogenous shrinkage (AS) that occurs in high-performance concrete. This study utilizes support vector regression (SVR) as a standalone machine-learning algorithm (MLA) which is then ensemble with boosting and bagging approaches to reduce the bias and overfitting issues. In addition, these ensemble methods are optimized with twenty sub-models with varying the nth estimators to achieve a robust R2. Moreover, modified bagging as random forest regression (RFR) is also employed to predict the AS of concrete containing supplementary cementitious materials (SCMs) and SAP. The data for modeling of AS includes water to cement ratio (W/C), water to binder ratio (W/B), cement, silica fume, fly ash, slag, the filer, metakaolin, super absorbent polymer, superplasticizer, super absorbent polymer size, curing time, and super absorbent polymer water intake. Statistical and k-fold validation is used to verify the validation of the data using MAE and RMSE. Furthermore, SHAPLEY analysis is performed on the variables to show the influential parameters. The SVM with AdaBoost and modified bagging (RF) illustrates strong models by delivering R2 of approximately 0.95 and 0.98, respectively, as compared to individual SVR models. An enhancement of 67% and 63% in the RF model, while in the case of SVR with AdaBoost, it was 47% and 36%, in RMSE and MAE of both models, respectively, when compared with the standalone SVR model. Thus, the impact of a strong learner can upsurge the efficiency of the model.

11.
Materials (Basel) ; 15(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36363306

RESUMO

Climate change has become trending news due to its serious impacts on Earth. Initiatives are being taken to lessen the impact of climate change and mitigate it. Among the different initiatives, researchers are aiming to find suitable alternatives for cement. This study is a humble effort to effectively utilize industrial- and agricultural-waste-based pozzolanic materials in concrete to make it economical and environmentally friendly. For this purpose, a ternary blend of binders (i.e., cement, fly ash, and rice husk ash) was employed in concrete. Different variables such as the quantity of different binders, fine and coarse aggregates, water, superplasticizer, and the age of the samples were considered to study their influence on the compressive strength of the ternary blended concrete using gene expression programming (GEP) and artificial neural networking (ANN). The performance of these two models was evaluated using R2, RMSE, and a comparison of regression slopes. It was observed that the GEP model with 100 chromosomes, a head size of 10, and five genes resulted in an optimum GEP model, as apparent from its high R2 value of 0.80 and 0.70 in the TR and TS phase, respectively. However, the ANN model performed better than the GEP model, as evident from its higher R2 value of 0.94 and 0.88 in the TR and TS phase, respectively. Similarly, lower values of RMSE and MAE were observed for the ANN model in comparison to the GEP model. The regression slope analysis revealed that the predicted values obtained from the ANN model were in good agreement with the experimental values, as shown by its higher R2 value (0.89) compared with that of the GEP model (R2 = 0.80). Subsequently, parametric analysis of the ANN model revealed that the addition of pozzolanic materials enhanced the compressive strength of the ternary blended concrete samples. Additionally, we observed that the compressive strength of the ternary blended concrete samples increased rapidly within the first 28 days of casting.

12.
Materials (Basel) ; 15(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36363356

RESUMO

In recent decades, a variety of organizational sectors have demanded and researched green structural materials. Concrete is the most extensively used manmade material. Given the adverse environmental effect of cement manufacturing, research has focused on minimizing environmental impact and cement-based product costs. Metakaolin (MK) as an additive or partial cement replacement is a key subject of concrete research. Developing predictive machine learning (ML) models is crucial as environmental challenges rise. Since cement-based materials have few ML approaches, it is important to develop strategies to enhance their mechanical properties. This article analyses ML techniques for forecasting MK concrete compressive strength (fc'). Three different individual and ensemble ML predictive models are presented in detail, namely decision tree (DT), multilayer perceptron neural network (MLPNN), and random forest (RF), along with the most effective factors, allowing for efficient investigation and prediction of the fc' of MK concrete. The authors used a database of MK concrete mechanical features for model generalization, a key aspect of any prediction or simulation effort. The database includes 551 data points with relevant model parameters for computing MK concrete's fc'. The database contains cement, metakaolin, coarse and fine aggregate, water, silica fume, superplasticizer, and age, which affect concrete's fc' but were seldom considered critical input characteristics in the past. Finally, the performance of the models is assessed to pick and deploy the best predicted model for MK concrete mechanical characteristics. K-fold cross validation was employed to avoid overfitting issues of the models. Additionally, ML approaches were utilized to combine SHapley Additive exPlanations (SHAP) data to better understand the MK mix design non-linear behaviour and how each input parameter's weighting influences the total contribution. Results depict that DT AdaBoost and modified bagging are the best ML algorithms for predicting MK concrete fc' with R2 = 0.92. Moreover, according to SHAP analysis, age impacts MK concrete fc' the most, followed by coarse aggregate and superplasticizer. Silica fume affects MK concrete's fc' least. ML algorithms estimate MK concrete's mechanical characteristics to promote sustainability.

13.
Materials (Basel) ; 15(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363391

RESUMO

This research examined machine learning (ML) techniques for predicting the compressive strength (CS) of self-compacting concrete (SCC). Multilayer perceptron (MLP), bagging regressor (BR), and support vector machine (SVM) were utilized for analysis. A total of 169 data points were retrieved from the various published articles. The data set was based on 11 input parameters, such as cement, limestone, fly ash, ground granulated blast-furnace slag, silica fume, rice husk ash, coarse aggregate, fine aggregate, superplasticizers, water, viscosity modifying admixtures, and one output with compressive strength of SCC. In terms of properly predicting the CS of SCC, the BR technique outperformed both the SVM and MLP models, as determined by the research results. In contrast to SVM and MLP, the coefficient of determination (R2) for the BR model was 0.95, whereas for SVM and MLP, the R2 was 0.90 and 0.86, respectively. In addition, a k-fold cross-validation approach was adopted to check the accuracy of the employed models. The statistical measures mean absolute percent error, mean absolute error, and root mean square error ensure the validity of the model. Using sensitivity analysis, the influence of input factors on the intended CS of SCC was also explored. This analysis reveals that the highest contributing parameter towards the CS of SCC was cement with 16.2%, while rice husk ash contributed the least with 4.25% among all the input variables.

14.
Polymers (Basel) ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365706

RESUMO

Given the excessive demolition of structures each year, the issues related to the generated structural waste are striking. Bricks being a major constituent in the construction industry, also hold a significant proportion of the construction waste generated annually. The reuse of this brick waste in new constructions is an optimal solution considering cost-effectiveness and sustainability. However, the problems related to the substandard peak stress and ultimate strain of concrete constructed with recycled brick aggregates (CRAs) limit its use in non-structural applications. The present study intends to improve the unsatisfactory mechanical characteristics of CRAs by utilizing low-cost glass fiber chopped strand mat (FCSM) sheets. The efficacy of FCSM sheets was assessed by wrapping them around CRA specimens constructed with different concrete strengths. A remarkable increase in the peak compressive stress and the ultimate strain of the CRA specimens were observed. For low, medium, and high strength CRAs, the ultimate strain improved by up to 320%, 308%, and 294%, respectively, as compared to the respective control specimens. Several existing analytical models were utilized to predict the peak compressive stress and ultimate strain of the CRAs strengthened using FCSM sheets. None of the considered models reproduced experimental results accurately. Therefore, equations were formulated using regression predicting the peak stress and ultimate strain of the CRAs confined with FCSM sheets. The predicted values were found to correlate well with the experimental values.

15.
Polymers (Basel) ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365710

RESUMO

The corrosion of steel reinforcement necessitates regular maintenance and repair of a variety of reinforced concrete structures. Retrofitting of beams, joints, columns, and slabs frequently involves the use of fiber-reinforced polymer (FRP) laminates. In order to develop simple prediction models for calculating the interfacial bond strength (IBS) of FRP laminates on a concrete prism containing grooves, this research evaluated the nonlinear capabilities of three ensemble methods­namely, random forest (RF) regression, extreme gradient boosting (XGBoost), and Light Gradient Boosting Machine (LIGHT GBM) models­based on machine learning (ML). In the present study, the IBS was the desired variable, while the model comprised five input parameters: elastic modulus x thickness of FRP (EfTf), width of FRP plate (bf), concrete compressive strength (fc'), width of groove (bg), and depth of groove (hg). The optimal parameters for each ensemble model were selected based on trial-and-error methods. The aforementioned models were trained on 70% of the entire dataset, while the remaining data (i.e., 30%) were used for the validation of the developed models. The evaluation was conducted on the basis of reliable accuracy indices. The minimum value of correlation of determination (R2 = 0.82) was observed for the testing data of the RF regression model. In contrast, the highest (R2 = 0.942) was obtained for LIGHT GBM for the training data. Overall, the three models showed robust performance in terms of correlation and error evaluation; however, the trend of accuracy was obtained as follows: LIGHT GBM > XGBoost > RF regression. Owing to the superior performance of LIGHT GBM, it may be considered a reliable ML prediction technique for computing the bond strength of FRP laminates and concrete prisms. The performance of the models was further supplemented by comparing the slopes of regression lines between the observed and predicted values, along with error analysis (i.e., mean absolute error (MAE), and root-mean-square error (RMSE)), predicted-to-experimental ratio, and Taylor diagrams. Moreover, the SHAPASH analysis revealed that the elastic modulus x thickness of FRP and width of FRP plate are the factors most responsible for IBS in FRP.

16.
Materials (Basel) ; 15(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234267

RESUMO

Estimating concrete properties using soft computing techniques has been shown to be a time and cost-efficient method in the construction industry. Thus, for the prediction of steel fiber-reinforced concrete (SFRC) strength under compressive and flexural loads, the current research employed advanced and effective soft computing techniques. In the current study, a single machine learning method known as multiple-layer perceptron neural network (MLPNN) and ensembled machine learning models known as MLPNN-adaptive boosting and MLPNN-bagging are used for this purpose. Water; cement; fine aggregate (FA); coarse aggregate (CA); super-plasticizer (SP); silica fume; and steel fiber volume percent (Vf SF), length (mm), and diameter were the factors considered (mm). This study also employed statistical analysis such as determination coefficient (R2), root mean square error (RMSE), and mean absolute error (MAE) to assess the performance of the algorithms. It was determined that the MLPNN-AdaBoost method is suitable for forecasting SFRC compressive and flexural strengths. The MLPNN technique's higher R2, i.e., 0.94 and 0.95 for flexural and compressive strength, respectively, and lower error values result in more precision than other methods with lower R2 values. SHAP analysis demonstrated that the volume of cement and steel fibers have the greatest feature values for SFRC's compressive and flexural strengths, respectively.

17.
Materials (Basel) ; 15(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36234306

RESUMO

The useful life of a concrete structure is highly dependent upon its durability, which enables it to withstand the harsh environmental conditions. Resistance of a concrete specimen to rapid chloride ion penetration (RCP) is one of the tests to indirectly measure its durability. The central aim of this study was to investigate the influence of different variables, such as, age, amount of binder, fine aggregate, coarse aggregate, water to binder ratio, metakaolin content and the compressive strength of concrete on the RCP resistance using a genetic programming approach. The number of chromosomes (Nc), genes (Ng) and, the head size (Hs) of the gene expression programming (GEP) model were varied to study their influence on the predicted RCP values. The performance of all the GEP models was assessed using a variety of performance indices, i.e., R2, RMSE and comparison of regression slopes. The optimal GEP model (Model T3) was obtained when the Nc = 100, Hs = 8 and Ng = 3. This model exhibits an R2 of 0.89 and 0.92 in the training and testing phases, respectively. The regression slope analysis revealed that the predicted values are in good agreement with the experimental values, as evident from their higher R2 values. Similarly, parametric analysis was also conducted for the best performing Model T3. The analysis showed that the amount of binder, compressive strength and age of the sample enhanced the RCP resistance of the concrete specimens. Among the different input variables, the RCP resistance sharply increased during initial stages of curing (28-d), thus validating the model results.

18.
Materials (Basel) ; 15(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36234310

RESUMO

The safety and economy of an infrastructure project depends on the material and design equations used to simulate the performance of a particular member. A variety of materials can be used in conjunction to achieve a composite action, such as a hollow steel section filled with concrete, which can be successfully utilized in the form of an axially loaded member. This study aims to model the ultimate compressive strength (Pu) of concrete-filled hollow steel sections (CFSS) by formulating a mathematical expression using gene expression programming (GEP). A total of 149 datapoints were obtained from the literature, considering ten input parameters, including the outer diameter of steel tube (D), wall thickness of steel tube, compressive strength of concrete (fc'), elastic modulus of concrete (Ec), yield strength of steel (fv), elastic modulus of steel (Es), length of the column (L), confinement factor (ζ), ratio of D to thickness of column, and the ratio of length to D of column. The performance of the developed models was assessed using coefficient of regression R2, root mean squared error RMSE, mean absolute error MAE and comparison of regression slopes. It was found that the optimal GEP Model T3, having number of chromosomes Nc = 100, head size Hs = 8 and number of genes Ng = 3, outperformed all the other models. For this particular model, R2overall equaled 0.99, RMSE values were 133.4 and 162.2, and MAE = 92.4 and 108.7, for training (TR) and testing (TS) phases, respectively. Similarly, the comparison of regression slopes analysis revealed that the Model T3 exhibited the highest R2 of 0.99 with m = 1, in both the TR and TS stages, respectively. Finally, parametric analysis showed that the Pu of composite steel columns increased linearly with the value of D, t and fy.

19.
Materials (Basel) ; 15(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36295312

RESUMO

The utilization of carbon-fiber-reinforced polymer (CFRP) composites as strengthening materials for structural components has become quite famous over the last couple of decades. The present experimental study was carried out to examine the effect of varied widths of externally bonded CFRP on the debonding strain of CFRP and the failure mode of plain concrete beams. Twelve plain concrete prims measuring 100 mm × 100 mm × 500 mm were cast and tested under identical loading conditions. The twelve specimens include two control prisms, i.e., without CFRP strips, and the remaining ten prisms were reinforced with CFRP strips with widths of 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm, respectively, i.e., two prisms in each group. Four-point loading flexural testing was carried out, and the resulting data are presented in the form of peak load vs. midpoint displacement, load vs. concrete strain, and load vs. CFRP strain. The peak load was directly recorded from the testing machine, while the midpoint deflection was recorded through the linear variable differential transducer (LVDT) installed at the midpoint. To measure the strain, two separate strain gauges were installed at the bottom of each concrete prism, i.e., one on the concrete surface and the other on the surface of the CFRP strip. The results of this study indicate that the debonding strain is a function of CFRP strip width and that the failure patterns of beams are significantly affected by the CFRP reinforcement ratio.

20.
Materials (Basel) ; 15(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295407

RESUMO

This research employed machine learning (ML) and SHapley Additive ExPlanations (SHAP) methods to assess the strength and impact of raw ingredients of cement mortar (CM) incorporated with waste glass powder (WGP). The data required for this study were generated using an experimental approach. Two ML methods were employed, i.e., gradient boosting and random forest, for compressive strength (CS) and flexural strength (FS) estimation. The performance of ML approaches was evaluated by comparing the coefficient of determination (R2), statistical checks, k-fold assessment, and analyzing the variation between experimental and estimated strength. The results of the ML-based modeling approaches revealed that the gradient boosting model had a good degree of precision, but the random forest model predicted the strength of the WGP-based CM with a greater degree of precision for CS and FS prediction. The SHAP analysis revealed that fine aggregate was a critical raw material, with a stronger negative link to the strength of the material, whereas WGP and cement had a greater positive effect on the strength of CM. Utilizing such approaches will benefit the building sector by supporting the progress of rapid and inexpensive approaches for identifying material attributes and the impact of raw ingredients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...