Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 20(11): 5739-5752, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37843033

RESUMO

Polymerized human hemoglobin (PolyhHb) has shown promise in preclinical hemorrhagic shock settings. Different synthetic and purification schemes can control the size of PolyhHbs, yet research is lacking on the impact of polymerized hemoglobin size on tissue oxygenation following hemorrhage and resuscitation in specialized animal models that challenge their resuscitative capabilities. Pre-existing conditions that compromise the vasculature and end organs, such as the liver, may limit the effectiveness of resuscitation and exacerbate the toxicity of these molecules, which is an important but minimally explored therapeutic dimension. In this study, we compared the effective oxygen delivery of intermediate molecular weight PolyhHb (PolyhHb-B3; 500-750 kDa) to high molecular weight PolyhHb (PolyhHb-B4; 750 kDa-0.2 µm) for resuscitative effectiveness in guinea pig models subjected to hemorrhagic shock. We evaluated how the size of PolyhHb impacts hemodynamics and tissue oxygenation in normal guinea pigs and guinea pigs on an atherogenic diet. We observed that while PolyhHb-B3 and -B4 equivalently restore hemodynamic parameters of normal-dieted guinea pigs, high-fat-dieted guinea pigs resuscitated with PolyhHb-B4 have lower mean arterial pressures, impaired tissue oxygenation, and higher plasma lactate levels than those receiving PolyhHb-B3. We characterized the plasma of these animals following resuscitation and found that despite similar oxygen delivery kinetics, circulating PolyhHb-B3 and -B4 demonstrated a size-dependent increase in the plasma viscosity, consistent with impaired perfusion in the PolyhHb-B4 transfusion group. We conclude that intermediate-sized PolyhHbs (such as -B3) are ideal for further research given the effective resuscitation of hemorrhagic shock based on tissue oxygenation in hypercholesterolemic guinea pigs.


Assuntos
Hipercolesterolemia , Choque Hemorrágico , Humanos , Cobaias , Animais , Choque Hemorrágico/tratamento farmacológico , Hipercolesterolemia/tratamento farmacológico , Oxigênio , Hemodinâmica , Hemoglobinas
2.
Biomacromolecules ; 24(4): 1855-1870, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36877888

RESUMO

Red blood cell (RBC) substitutes tested in late-phase clinical trials contained low-molecular-weight hemoglobin species (<500 kDa), resulting in vasoconstriction, hypertension, and oxidative tissue injury; therefore, contributing to poor clinical outcomes. This work aims to improve the safety profile of the RBC substitute, polymerized human hemoglobin (PolyhHb), via in vitro and in vivo screening of PolyhHb fractionated into four molecular weight brackets (50-300 kDa [PolyhHb-B1]; 100-500 kDa [PolyhHb-B2]; 500-750 kDa [PolyhHb-B3]; and 750 kDa to 0.2 µm [PolyhHb-B4]) using a two-stage tangential flow filtration purification process. Analysis showed that PolyhHb's oxygen affinity, and haptoglobin binding kinetics decreased with increasing bracket size. A 25% blood-for-PolyhHb exchange transfusion guinea pig model suggests that hypertension and tissue extravasation decreased with increasing bracket size. PolyhHb-B3 demonstrated extended circulatory pharmacokinetics, no renal tissue distribution, no aberrant blood pressure, or cardiac conduction effects, and may therefore be appropriate material for further evaluation.


Assuntos
Substitutos Sanguíneos , Hemoglobinas , Humanos , Animais , Cobaias , Hemoglobinas/química , Oxigênio/metabolismo , Polimerização , Substitutos Sanguíneos/farmacologia , Eritrócitos/metabolismo
3.
Int J Biol Macromol ; 171: 465-479, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33428952

RESUMO

The ubiquitous nature of hemoglobins, their presence in multiple forms and low cellular expression in organisms suggests alternative physiological functions of hemoglobins in addition to oxygen transport and storage. Previous research has proposed enzymatic function of hemoglobins such as nitric oxide dioxygenase, nitrite reductase and hydroxylamine reductase. In all these enzymatic functions, active ferrous form of hemoglobin is converted to ferric form and reconversion of ferric to ferrous through reduction partners is under active investigation. The model alga C. reinhardtii contains multiple globins and is thus expected to have multiple putative methemoglobin reductases to augment the physiological functions of the novel hemoglobins. In this regard, three putative methemoglobin reductases and three algal hemoglobins were characterized. Our results signify that the identified putative methemoglobin reductases can reduce algal methemoglobins in a nonspecific manner under in vitro conditions. Enzyme kinetics of two putative methemoglobin reductases with methemoglobins as substrates and in silico analysis support interaction between the hemoglobins and the two reduction partners as also observed in vitro. Our investigation on algal methemoglobin reductases underpins the valuable chemistry of nitric oxide with the newly discovered hemoglobins to ensure their physiological relevance, with multiple hemoglobins probably necessitating the presence of multiple reductases.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Citocromo-B(5) Redutase/fisiologia , Oxigenases/metabolismo , Proteínas de Plantas/fisiologia , Hemoglobinas Truncadas/metabolismo , Técnicas de Química Analítica , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Sequência Conservada , Citocromo-B(5) Redutase/química , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/isolamento & purificação , Humanos , Cinética , Metemoglobina/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Oxirredução , Proteínas de Plantas/isolamento & purificação , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/isolamento & purificação
4.
Protein Pept Lett ; 28(2): 164-182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32533815

RESUMO

AIMS: The aim of our study is to understand the biophysical traits that govern the stability and folding of Synechocystis hemoglobin, a unique cyanobacterial globin that displays unusual traits not observed in any of the other globins discovered so far. BACKGROUND: For the past few decades, classical hemoglobins such as vertebrate hemoglobin and myoglobin have been extensively studied to unravel the stability and folding mechanisms of hemoglobins. However, the expanding wealth of hemoglobins identified in all life forms with novel properties, like heme coordination chemistry and globin fold, have added complexity and challenges to the understanding of hemoglobin stability, which has not been adequately addressed. Here, we explored the unique truncated and hexacoordinate hemoglobin from the freshwater cyanobacterium Synechocystis sp. PCC 6803 known as "Synechocystis hemoglobin (SynHb)". The "three histidines" linkages to heme are novel to this cyanobacterial hemoglobin. OBJECTIVE: Mutational studies were employed to decipher the residues within the heme pocket that dictate the stability and folding of SynHb. METHODS: Site-directed mutants of SynHb were generated and analyzed using a repertoire of spectroscopic and calorimetric tools. RESULTS: The results revealed that the heme was stably associated to the protein under all denaturing conditions with His117 playing the anchoring role. The studies also highlighted the possibility of existence of a "molten globule" like intermediate at acidic pH in this exceptionally thermostable globin. His117 and other key residues in the heme pocket play an indispensable role in imparting significant polypeptide stability. CONCLUSION: Synechocystis hemoglobin presents an important model system for investigations of protein folding and stability in general. The heme pocket residues influenced the folding and stability of SynHb in a very subtle and specific manner and may have been optimized to make this Hb the most stable known as of date. Other: The knowledge gained hereby about the influence of heme pocket amino acid side chains on stability and expression is currently being utilized to improve the stability of recombinant human Hbs for efficient use as oxygen delivery vehicles.


Assuntos
Hemoglobinas/química , Hemoglobinas/metabolismo , Histidina/química , Histidina/metabolismo , Ligação Proteica , Synechocystis/metabolismo , Hemoglobinas/genética , Histidina/genética , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Int J Biol Macromol ; 162: 1054-1063, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603730

RESUMO

One popular and relevant proposed function for cyanobacterial hemoglobin (Synechocystis Hb) is anaerobic nitrite reductase in vivo. During such reduction reactions, the hexacoordinated heme iron atom of SynHb is oxidized from the ferrous (Fe+2) to ferric (Fe+3) state and prevent damage by limiting the concentration of toxic metabolites such as nitrite. In order to perform these functions in vivo, there must be a mechanism that converts inactive Fe+3-SynHb back to the active Fe+2-SynHb to accomplish the nitrite reductase function. Here, we report a cognate reductase protein for Synechocystis hemoglobin which can reduce the Fe+3-SynHb to Fe+2-SynHb, thus lending a support to the proposed nitrite reductase function. This reductase is also able to reduce pentacoordinate Hbs such as myoglobin but with lower affinity compared to hexacoordinate SynHb. Insilico model of reductase protein-cyanobacterial hemoglobin complex revealed that the heme active site of Hb faces the catalytic center of the reductase protein and several amino acids in the interface interacts non-covalently thus favoring their interaction. Overall, our in vitro study provides the basic foundation for the understanding of the specific molecular mechanism of action and interaction of the SynHb reductase protein, which need to be investigated in further detail.


Assuntos
Proteínas de Bactérias/química , Hemoglobinas/química , Modelos Moleculares , Oxirredutases/química , Synechocystis/enzimologia , Proteínas de Bactérias/genética , Oxirredutases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Synechocystis/genética
6.
Protein Pept Lett ; 27(10): 1046-1057, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32242773

RESUMO

BACKGROUND: ß-Amylase (EC 3.2.1.2) is a maltogenic enzyme, which releases ß-maltose from the non-reducing end of the substrates. The enzyme plays important roles for the production of vaccine, maltiol and maltose rich syrups. Apart from these applications the enzyme protects cells from abiotic as well as oxidative damage. The enzyme is ßwell characterized in ßplants and microbes and crystal structures of ß-amylases ßhave been ßobtained from sweet potato, soybean and Bacillus cereus. OBJECTIVE: Find out correlation between structural and functional stability induced by change in pH, temperature and chaotropes. METHODS: Activity, intrinsic fluorescence, extrinsic fluorescence, near- and far- ultraviolet circular dichroism spectroscopic measurements were performed. RESULTS: Peaks about 208 nm and 222 nm obtained by near-ultraviolet circular dichroism correspond to α-helix whereas peak at 215 nm shows presence of ß-sheet. At pH 2.0, absence of tertiary structures, exposed of hydrophobic regions and presence of substantial secondary structures, revealed the existence of molten globule like state. Temperature induced denaturation studies showed that the enzyme was stable up to 75 ºC and the process was found to be irreversible in nature. Chaotropes dependent equilibrium unfolding studies revealed that at low concentration of chaotropes, ellipticity and intrinsic fluorescence ßintensity were ßdecreased ßwhereas ßenzymatic activity remained unchanged, which revealed fenugreek ß-amylase is multi-domains enzyme and catalytic ßdomain ßis more ßstable compare to non-catalytic domain. Moreover, the transition was sigmoidal and non-coincidental. CONCLUSION: Results indicate the probable existence of intermediate states that might perform significant role in physiological process and biotechnological applications.


Assuntos
Germinação , Proteínas de Plantas/química , Desnaturação Proteica , Sementes/enzimologia , Trigonella/enzimologia , beta-Amilase/química , Concentração de Íons de Hidrogênio , Proteínas de Plantas/metabolismo , beta-Amilase/metabolismo
7.
Biochim Biophys Acta Gene Regul Mech ; 1863(3): 194479, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31931179

RESUMO

Cellular prion protein (PrP) misfolds into an aberrant and infectious scrapie form (PrPSc) that lead to fatal transmissible spongiform encephalopathies (TSEs). Association of prions with G-quadruplex (GQ) forming nucleic acid motifs has been reported, but implications of these interactions remain elusive. Herein, we show that the promoter region of the human prion gene (PRNP) contains two putative GQ motifs (Q1 and Q2) that assume stable, hybrid, intra-molecular quadruplex structures and bind with high affinity to PrP. Here, we investigate the ability of PrP to bind to the quadruplexes in its own promoter. We used a battery of techniques including SPR, NMR, CD, MD simulations and cell culture-based reporter assays. Our results show that PrP auto-regulates its expression by binding and resolving the GQs present in its own promoter. Furthermore, we map this resolvase-like activity to the N-terminal region (residues 23-89) of PrP. Our findings highlight a positive transcriptional-translational feedback regulation of the PRNP gene by PrP through dynamic unwinding of GQs in its promoter. Taken together, our results shed light on a yet unknown mechanism of regulation of the PRNP gene. This work provides the necessary framework for a plethora of studies on understanding the regulation of PrP levels and its implications in prion pathogenesis.


Assuntos
Quadruplex G , Regulação da Expressão Gênica , Proteínas Priônicas/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Células Cultivadas , Retroalimentação Fisiológica , Humanos , Proteínas Priônicas/biossíntese , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...