Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(55): 117562-117576, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37870671

RESUMO

Plants are usually provoked by a variety of heavy metal (HM) stressors that have adverse effects on their growth and other biochemical characterizations. Among the HMs, chromium has been considered the most toxic for both plants and animals. The present study was conducted to compare the phytotoxic effects of increasing chromium (VI) salt and nanoparticles (NPs) concentrations on various growth indexes of rice (Oryza sativa L. var. swat 1) seedlings grown in a hydroponic system. The 7-day rice seedlings were exposed to Cr (VI) salt and NPs hydroponic suspensions which were adjusted to the concentration of 0, 50, 100, 150, 200 and 250 mg/L. Both the Cr (VI) salt and NPs with lower concentrations (up to 100mg/L) exerted minimum inhibitory effects on the growth performance of rice seedlings. However, a significant decrease in shoot and root length and their fresh and dry weight was recorded at higher doses of Cr (VI) salt (200 mg/L) and NPs (250 mg/L). The stress induced by Cr (VI) salt has drastically affected the roots, whereas, Cr (VI) NPs significantly affected the shoot tissues. Photosynthetic pigments decreased significantly in a dose-dependent manner, and the reduction was more pronounced in rice seedlings exposed to Cr (VI) NPs compared to Cr (VI) salt. Cr (VI) NPs enhanced the membrane permeability in shoots and roots as compared to that of Cr (VI) salt, which resulted in higher concentration of reactive oxygen species (ROS) and increased lipid peroxidation. The activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) increased significantly in shoot/root tissue following exposure to higher doses of Cr (VI) salt (200 mg/L) and NPs stress (250 mg/L), while minor changes in CAT and APX activities were observed in root and shoot tissues after exposure to higher concentration of Cr (VI) NP. Furthermore, the increasing concentrations of Cr (VI) NPs increased the length of stomatal guard cells. Conclusively, Cr (VI) salt and NPs in higher concentrations have higher potential to damage the growth and induce oxidative stress in rice plants.


Assuntos
Nanopartículas , Oryza , Plântula , Antioxidantes/metabolismo , Estresse Oxidativo , Cromo/toxicidade , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta , Nanopartículas/toxicidade , Raízes de Plantas/metabolismo
2.
FEMS Microbiol Ecol ; 99(7)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37401174

RESUMO

Glaciers in high-altitude mountain regions are retreating rapidly due to global warming, exposing deglaciated soils to extreme environmental conditions, and microbial colonization. However, knowledge about chemolithoautotrophic microbes, which play important roles in the development of oligotrophic deglaciated soils prior to plant colonization, remains elusive in deglaciated soils. Using real-time quantitative PCR and clone library methods, the diversity and succession of the chemolithoautotrophic microbial community harboring the cbbM gene across a 14-year deglaciation chronosequence on the Tibetan Plateau were determined. The abundance of the cbbM gene remained stable for the first 8 years after deglaciation and then increased significantly, ranging from 105 to 107 gene copies g-1 soil (P < 0.001). Soil total carbon increased gradually to 5-year deglaciation and then decreased. While total nitrogen and total sulfur levels were low throughout the chronosequence. Chemolithoautotrophs were related to Gammaproteobacteria and Betaproteobacteria, with the former dominating early deglaciated soils and the latter dominating older deglaciated soils. The diversity of chemolithoautotrophs was high in mid-age deglaciated soils (6-year-old) and was low in early (3-year-old) and older deglaciated soils (12-year-old). Our findings revealed that chemolithoautotrophic microbes colonize deglaciated soils quickly and follow a clear successional pattern across recently deglaciated chronosequences.


Assuntos
Microbiota , Microbiologia do Solo , Tibet , Solo , Microbiota/genética , Camada de Gelo/microbiologia
3.
J Environ Manage ; 268: 110659, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32510429

RESUMO

Monolayer barriers, which are usually known as evapotranspiration (ET) covers, have long been used as alternative final cover systems in waste landfills. Coal bottom ash was evaluated as a good alternative to soil in landfill ET cover systems to increase the bottom ash (BA) recycling ratio in the past. In a previous study, applying BA promoted plant growth characteristics and improved the soil physicochemical properties, particularly the soil organic carbon (SOC) content. In this study, we investigated the effect of BA on the SOC increase by examining the chemical and physical characteristics of ET cover systems, and we compared BA mixed and pure soils. We collected two types of soil from the landfill cover, namely, BA mixed soil (BA 35% + soil 65%) and soil alone (100%), for treatments during the 5th year after installation. Bottom ash mixed soil has four times more SOC than the pure soil at the surface soil layer, but the SOC contents significantly decreased with the soil depth in BA mixed soil, and no differences were found between BA mixed soil and pure soil below a 25 cm soil depth. In addition, there was no significant difference in the chemical composition of the SOC according to a13C NMR. However, the allophane contents were significantly higher in BA mixed soil than pure soil, which physically protects the material from organic matter decomposition. Conclusively, the higher allophane content originating from BA might act as the primary factor in the high accumulation of soil organic carbon in the BA mixed soil layer by retarding the organic matter decomposition.


Assuntos
Cinza de Carvão , Carvão Mineral , Carbono , Solo , Instalações de Eliminação de Resíduos
4.
Sci Rep ; 10(1): 6746, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317769

RESUMO

With the increase in iron/steel production, the higher volume of by-products (slag) generated necessitates its efficient recycling. Because the Linz-Donawitz (LD) slag is rich in silicon (Si) and other fertilizer components, we aim to evaluate the impact of the LD slag amendment on soil quality (by measuring soil physicochemical and biological properties), plant nutrient uptake, and strengthens correlations between nutrient uptake and soil bacterial communities. We used 16 S rRNA illumine sequencing to study soil bacterial community and APIZYM assay to study soil enzymes involved in C, N, and P cycling. The LD slag was applied at 2 Mg ha-1 to Japonica and Indica rice cultivated under flooded conditions. The LD slag amendment significantly improved soil pH, plant photosynthesis, soil nutrient availability, and the crop yield, irrespective of cultivars. It significantly increased N, P, and Si uptake of rice straw. The slag amendment enhanced soil microbial biomass, soil enzyme activities and enriched certain bacterial taxa featuring copiotrophic lifestyles and having the potential role for ecosystem services provided to the benefit of the plant. The study evidenced that the short-term LD slag amendment in rice cropping systems is useful to improve soil physicochemical and biological status, and the crop yield.


Assuntos
Fertilizantes/análise , Consórcios Microbianos/efeitos dos fármacos , Oryza/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Resíduos/análise , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Ciclo do Carbono/fisiologia , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Ferro/farmacologia , Metalurgia/métodos , Consórcios Microbianos/fisiologia , Ciclo do Nitrogênio/fisiologia , Oryza/microbiologia , Oryza/fisiologia , Fósforo/fisiologia , Fotossíntese/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , RNA Ribossômico 16S/genética , Silício/metabolismo , Silício/farmacologia , Solo/química , Microbiologia do Solo , Aço/química
5.
Environ Int ; 127: 531-539, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981911

RESUMO

The effective utilization of slag-based Silicon fertilizer (silicate fertilizer) in agriculture to improve crop productivity and to mitigate environmental consequences turns it into a high value added product in sustainable agriculture. Despite the integral role of soil microbiome in agricultural production and virtually all ecosystem processes, our understanding of the microbial role in ecosystem functions and agricultural productivity in response to the silicate fertilizer amendment is, however, elusive. In this study, using 16S rRNA gene and ITS amplicon illumina sequencing and a functional gene microarray, i.e., GeoChip 5, we report for the first time the responses of soil microbes and their functions to the silicate fertilizer amendment in two different geographic races of Oryza sativa var. Japonica (Japonica rice) and var. Indica (Indica rice). The silicate fertilizer significantly increased soil pH, photosynthesis rate, nutrient (i.e., C, Si, Fe, P) availability and crop productivity, but decreased N availability and CH4 and N2O emissions. Moreover, the silicate fertilizer application significantly altered soil bacterial and fungal community composition and increased abundance of functional genes involved in labile C degradation, C and N fixation, phosphorus utilization, CH4 oxidation, and metal detoxification, whereas those involve in CH4 production and denitrification were decreased. The changes in the taxonomic and functional structure of microbial communities by the silicate fertilizer were mostly regulated by soil pH, plant photosynthesis, and nutrient availability. This study provides novel insights into our understanding of microbial functional processes in response to the silicate fertilizer amendment in rice cropping systems and has important implications for sustainable rice production.


Assuntos
Fertilizantes/análise , Microbiota , Oryza , Microbiologia do Solo , Agricultura , Bactérias/classificação , Oryza/genética , RNA Ribossômico 16S/genética , Solo/química
6.
Sci Total Environ ; 662: 591-599, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30699379

RESUMO

Nitrous oxide (N2O) is a major greenhouse gas (GHG) with high global warming potential. A majority of the N2O flux comes from agricultural sources, mainly due to nitrogen (N) fertilization. The soil N2O flux, induced by N fertilization, mainly originated from two different sources, i.e., fertilizer and soil organic nitrogen (SON). It is essential to know the individual contribution of these two different sources in total N2O flux for planning necessary mitigation strategies. It is also indispensable to know the seasonal difference of emission factors (EF) for having more accurate N2O inventory. Therefore, an experiment was conducted in a South Korean upland soil during summer and winter seasons using 15N labeled urea as an artificial N source and source specific N2O emissions were distinguished under different environmental conditions. To characterize the N2O emissions from urea, 0, 50, 100 and 200% of the Korean N recommendation rate was selected for specified crops. The Korean N recommendation rate for red pepper (Capsicum annuum) and garlic (Allium sativum) was 190 and 250 kg N ha-1, respectively. Direct emissions from urea were estimated from the difference of 15N2O flux emitted from 15N-urea treated soil and the natural abundance of 15N2O. From total N2O fluxes, urea originated N2O flux was 0.87% and 0.13% of the applied N in warm and cold seasons, respectively and the rest comes from SON. Nitrous oxide EF in the warm season was 2.69% of applied N and in the cold season that was 0.25%. Nitrous oxide fluxes showed a significant exponential relationship with soil temperature. The results show the necessity of considering the different N2O EF for warm and cold cropping seasons to reduce uncertainty in N2O inventory. The findings of this research may help better understand N2O source partitioning and the emission budget from warm and cold cropping seasons.

7.
J Hazard Mater ; 353: 236-243, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29674098

RESUMO

Over the past decades, with increasing steel manufacturing, the huge amount of by-products (slags) generated need to be reused in an efficient way not only to reduce landfill slag sites but also for sustainable and eco-friendly agriculture. Our preliminary laboratory study revealed that compared to blast furnace slag, electric arc furnace slag and ladle furnace slag, the Linz-Donawitz converter (LD) slag markedly decreased CH4 production rate and increased microbial activity. In the greenhouse experiment, the LD slag amendment (2.0 Mg ha-1) significantly (p < 0.05) increased grain yield by 10.3-15.2%, reduced CH4 emissions by 17.8-24.0%, and decreased inorganic As concentrations in grain by 18.3-19.6%, compared to the unamended control. The increase in yield is attributed to the increased photosynthetic rates and increased availability of nutrients to the rice plant. Whereas, the decrease in CH4 emissions could be due to the higher Fe availability in the slag amended soil, which acted as an alternate electron acceptor, thereby, suppressed CH4 emissions. The more Fe-plaque formation which could adsorb more As and the competitive inhibition of As uptake with higher availability of Si could be the reason for the decrease in As uptake by rice cultivated with LD slag amendment.


Assuntos
Poluentes Atmosféricos/metabolismo , Arsênio/metabolismo , Resíduos Industriais , Metano/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Aço , Adsorção , Poluição do Ar/prevenção & controle , Arsênio/química , Grão Comestível/metabolismo , Ferro/química , Metalurgia , Medição de Risco , Poluentes do Solo/química
8.
Sci Total Environ ; 537: 441-6, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282776

RESUMO

Rye (Secale cerealis) has been widely cultivated to improve soil quality in temperate paddies. However, its biomass incorporation can significantly increase greenhouse gas emissions, particularly the emission of methane (CH4), during rice cultivation. The chemical composition and productivity of cover crop biomass may vary at different growing stages. Therefore, nutrient productivity and CH4 production potential might be controlled by selecting the optimum harvesting stage. To investigate the effect of rye harvesting stage on nutrient productivity and CH4 production potential, rye was harvested at different growing stages, from the flowering stage to the maturing stage, for seven weeks. The chemical composition and biomass productivity of rye were investigated. CH4 production was measured by laboratory incubation, and CH4 production potential was estimated to determine the real impact on CH4 dynamics in rice soils. Rye biomass increased with plant maturation, but nutrient productivities such as N (nitrogen), P2O5, and K2O were maximized at the flowering stage. The contents of cellulose and lignin increased significantly as plants matured, but the total N, labile organic carbon (C), and hot and cold water-extractable organic C clearly decreased. Soils were mixed with 0.3% (wt wt(-1) on dry weight) air-dried biomass and incubated to measure the maximum CH4 productivity at 30 °C under flooded conditions. Maximum CH4 productivity was significantly correlated with increasing labile organic C and protein content, but it was negatively correlated with total organic C, cellulose, and lignin content. CH4 production potentials were significantly increased up to the pre-maturing stage (220 DAS) and remained unchanged thereafter. As a result, CH4 production potential per N productivity was the lowest at the late flowering stage (198-205 DAS), which could be the best harvesting stage as well as the most promising stage for increasing nutrient production and decreasing GHG emissions in temperate mono-rice paddy soils.


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/análise , Esterco , Metano/análise , Oryza , Nitrogênio/análise
9.
Osong Public Health Res Perspect ; 4(5): 271-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24298443

RESUMO

OBJECTIVES: Dalbergia sissoo Roxb. stem bark possesses anti-inflammatory, antipyretic, and antioxidant properties. This plant is used traditionally in the Indian system of medicine to treat emesis, ulcers, leucoderma, dysentery, stomach complaints, and skin disorders. This study was conducted to evaluate the antiulcer effects of D. sissoo stem bark methanol extract (DSME) against the diclofenac sodium-induced ulceration in rat. METHODS: The DSME (200 mg/kg and 400 mg/kg body weight) was orally administered to rats once a day for 10 days in diclofenac-treated rats. The gastroprotective effects of DSME were determined by assessing gastric-secretory parameters such as volume of gastric juice, pH, free acidity, and total acidity. Biochemical studies of gastric mucosa were conducted to estimate the levels of nonprotein sulfhydryls (NP-SHs), lipid peroxidation [thiobarbituric acid reactive substances (TBARSs)], reduced glutathione (GSH), hydrogen peroxide (H2O2), levels of scavenging antioxidants, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST), and myeloperoxidase (MPO). Moreover, adherent mucus content and histological studies were performed on stomach tissues. RESULTS: Administration of DSME significantly decreased the ulcer index, TBARSs, H2O2, and MPO activity in gastric mucosa of the ulcerated rats. Activities of enzymic antioxidants, CAT, SOD, GSH-Px, GST and GSH, and NP-SH contents were significantly increased with DSME administration in the gastric mucosa of diclofenac-treated rats. Volume of gastric juice, total and free acidity were decreased, whereas pH of the gastric juice was increased with the administration of DSME + diclofenac. Our results show that DSME administration is involved in the prevention of ulcer through scavenging of free radicals. Results of histopathological studies supported the gastroprotective activities of DSME. CONCLUSION: The results of this study showed that DSME exhibit potential gastroprotective activity probably due to its antioxidant and cytoprotection ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...