Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Rep ; 14(1): 7897, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570535

RESUMO

With easy access to social media platforms, spreading fake news has become a growing concern today. Classifying fake news is essential, as it can help prevent its negative impact on individuals and society. In this regard, an end-to-end framework for fake news detection is developed by utilizing the power of adversarial training to make the model more robust and resilient. The framework is named "ANN: Adversarial News Net," emoticons have been extracted from the datasets to understand their meanings concerning fake news. This information is then fed into the model, which helps to improve its performance in classifying fake news. The performance of the ANN framework is evaluated using four publicly available datasets, and it is found to outperform baseline methods and previous studies after adversarial training. Experiments show that Adversarial Training improved the performance by 2.1% over the Random Forest baseline and 2.4% over the BERT baseline method in terms of accuracy. The proposed framework can be used to detect fake news in real-time, thereby mitigating its harmful effects on society.

2.
Sci Rep ; 14(1): 1743, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242908

RESUMO

Francisella tularensis (Ft) poses a significant threat to both animal and human populations, given its potential as a bioweapon. Current research on the classification of this pathogen and its relationship with soil physical-chemical characteristics often relies on traditional statistical methods. In this study, we leverage advanced machine learning models to enhance the prediction of epidemiological models for soil-based microbes. Our model employs a two-stage feature ranking process to identify crucial soil attributes and hyperparameter optimization for accurate pathogen classification using a unique soil attribute dataset. Optimization involves various classification algorithms, including Support Vector Machines (SVM), Ensemble Models (EM), and Neural Networks (NN), utilizing Bayesian and Random search techniques. Results indicate the significance of soil features such as clay, nitrogen, soluble salts, silt, organic matter, and zinc , while identifying the least significant ones as potassium, calcium, copper, sodium, iron, and phosphorus. Bayesian optimization yields the best results, achieving an accuracy of 86.5% for SVM, 81.8% for EM, and 83.8% for NN. Notably, SVM emerges as the top-performing classifier, with an accuracy of 86.5% for both Bayesian and Random Search optimizations. The insights gained from employing machine learning techniques enhance our understanding of the environmental factors influencing Ft's persistence in soil. This, in turn, reduces the risk of false classifications, contributing to better pandemic control and mitigating socio-economic impacts on communities.


Assuntos
Francisella tularensis , Humanos , Solo , Teorema de Bayes , Redes Neurais de Computação , Aprendizado de Máquina , Máquina de Vetores de Suporte
3.
Neural Netw ; 168: 363-379, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801917

RESUMO

Multi-object Tracking (MOT) is very important in human surveillance, sports analytics, autonomous driving, and cooperative robots. Current MOT methods do not perform well in non-uniform movements, occlusion and appearance-reappearance scenarios. We introduce a comprehensive MOT method that seamlessly merges object detection and identity linkage within an end-to-end trainable framework, designed with the capability to maintain object links over a long period of time. Our proposed model, named STMMOT, is architectured around 4 key modules: (1) Candidate proposal creation network, generates object proposals via vision-Transformer encoder-decoder architecture; (2) Scale variant pyramid, progressive pyramid structure to learn the self-scale and cross-scale similarities in multi-scale feature maps; (3) Spatio-temporal memory encoder, extracting the essential information from the memory associated with each object under tracking; and (4) Spatio-temporal memory decoder, simultaneously resolving the tasks of object detection and identity association for MOT. Our system leverages a robust spatio-temporal memory module that retains extensive historical object state observations and effectively encodes them using an attention-based aggregator. The uniqueness of STMMOT resides in representing objects as dynamic query embeddings that are updated continuously, which enables the prediction of object states with an attention mechanism and eradicates the need for post-processing. Experimental results show that STMMOT archives scores of 79.8 and 78.4 for IDF1, 79.3 and 74.1 for MOTA, 73.2 and 69.0 for HOTA, 61.2 and 61.5 for AssA, and maintained an ID switch count of 1529 and 1264 on MOT17 and MOT20, respectively. When evaluated on MOT20, it scored 78.4 in IDF1, 74.1 in MOTA, 69.0 in HOTA, and 61.5 in AssA, and kept the ID switch count to 1264. Compared with the previous best TransMOT, STMMOT achieves around a 4.58% and 4.25% increase in IDF1, and ID switching reduction to 5.79% and 21.05% on MOT17 and MOT20, respectively.


Assuntos
Aprendizagem , Movimento , Humanos
4.
BMC Bioinformatics ; 24(1): 273, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393255

RESUMO

Pathogenic bacteria present a major threat to human health, causing various infections and illnesses, and in some cases, even death. The accurate identification of these bacteria is crucial, but it can be challenging due to the similarities between different species and genera. This is where automated classification using convolutional neural network (CNN) models can help, as it can provide more accurate, authentic, and standardized results.In this study, we aimed to create a larger and balanced dataset by image patching and applied different variations of CNN models, including training from scratch, fine-tuning, and weight adjustment, and data augmentation through random rotation, reflection, and translation. The results showed that the best results were achieved through augmentation and fine-tuning of deep models. We also modified existing architectures, such as InceptionV3 and MobileNetV2, to better capture complex features. The robustness of the proposed ensemble model was evaluated using two data splits (7:2:1 and 6:2:2) to see how performance changed as the training data was increased from 10 to 20%. In both cases, the model exhibited exceptional performance. For the 7:2:1 split, the model achieved an accuracy of 99.91%, F-Score of 98.95%, precision of 98.98%, recall of 98.96%, and MCC of 98.92%. For the 6:2:2 split, the model yielded an accuracy of 99.94%, F-Score of 99.28%, precision of 99.31%, recall of 98.96%, and MCC of 99.26%. This demonstrates that automatic classification using the ensemble model can be a valuable tool for diagnostic staff and microbiologists in accurately identifying pathogenic bacteria, which in turn can help control epidemics and minimize their social and economic impact.


Assuntos
Epidemias , Humanos , Redes Neurais de Computação
5.
Cancers (Basel) ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36612309

RESUMO

Explainable Artificial Intelligence is a key component of artificially intelligent systems that aim to explain the classification results. The classification results explanation is essential for automatic disease diagnosis in healthcare. The human respiration system is badly affected by different chest pulmonary diseases. Automatic classification and explanation can be used to detect these lung diseases. In this paper, we introduced a CNN-based transfer learning-based approach for automatically explaining pulmonary diseases, i.e., edema, tuberculosis, nodules, and pneumonia from chest radiographs. Among these pulmonary diseases, pneumonia, which COVID-19 causes, is deadly; therefore, radiographs of COVID-19 are used for the explanation task. We used the ResNet50 neural network and trained the network on extensive training with the COVID-CT dataset and the COVIDNet dataset. The interpretable model LIME is used for the explanation of classification results. Lime highlights the input image's important features for generating the classification result. We evaluated the explanation using radiologists' highlighted images and identified that our model highlights and explains the same regions. We achieved improved classification results with our fine-tuned model with an accuracy of 93% and 97%, respectively. The analysis of our results indicates that this research not only improves the classification results but also provides an explanation of pulmonary diseases with advanced deep-learning methods. This research would assist radiologists with automatic disease detection and explanations, which are used to make clinical decisions and assist in diagnosing and treating pulmonary diseases in the early stage.

6.
Comput Biol Med ; 151(Pt A): 106240, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36423532

RESUMO

Alzheimer's disease is a neurodegenerative condition that gradually impairs cognitive abilities. Recently, various neuroimaging modalities and machine learning methods have surfaced to diagnose Alzheimer's disease. Resting-state fMRI is a neuroimaging modality that has been widely utilized to study brain activity related to neurodegenerative diseases. In literature, the previous studies are limited to the binary classification of Alzheimer's disease and Mild Cognitive Impairment. The application of computer-aided diagnosis for the numerous advancing phases of Alzheimer's disease, on the other hand, remains understudied. This research analyzes and presents methods for multi-label classification of six Alzheimer's stages using rs-fMRI and deep learning. The proposed model solves the multi-class classification problem by extracting the brain's functional connectivity networks from rs-fMRI data and employing two deep learning approaches, Stacked Sparse Autoencoder and Brain Connectivity Graph Convolutional Network. The suggested models' results were assessed using the k-fold cross-validation approach, and an average accuracy of 77.13% and 84.03% was reached for multi-label classification using Stacked Sparse Autoencoders and Brain Connectivity Based Convolutional Network, respectively. An analysis of brain regions was also performed by using the network's learned weights, leading to the conclusion that the precentral gyrus, frontal gyrus, lingual gyrus, and supplementary motor area are the significant brain regions of interest.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Humanos , Doença de Alzheimer/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem , Encéfalo/diagnóstico por imagem
7.
Microsc Res Tech ; 84(12): 3023-3034, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34245203

RESUMO

With the evolution of deep learning technologies, computer vision-related tasks achieved tremendous success in the biomedical domain. For supervised deep learning training, we need a large number of labeled datasets. The task of achieving a large number of label dataset is a challenging. The availability of data makes it difficult to achieve and enhance an automated disease diagnosis model's performance. To synthesize data and improve the disease diagnosis model's accuracy, we proposed a novel approach for the generation of images for three different stages of Alzheimer's disease using deep convolutional generative adversarial networks. The proposed model out-perform in synthesis of brain positron emission tomography images for all three stages of Alzheimer disease. The three-stage of Alzheimer's disease is normal control, mild cognitive impairment, and Alzheimer's disease. The model performance is measured using a classification model that achieved an accuracy of 72% against synthetic images. We also experimented with quantitative measures, that is, peak signal-to-noise (PSNR) and structural similarity index measure (SSIM). We achieved average PSNR score values of 82 for AD, 72 for CN, and 73 for MCI and SSIM average score values of 25.6 for AD, 22.6 for CN, and 22.8 for MCI.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Tomografia por Emissão de Pósitrons
8.
Interdiscip Sci ; 13(3): 371-388, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33959851

RESUMO

Protein-protein interaction plays an important role in the understanding of biological processes in the body. A network of dynamic protein complexes within a cell that regulates most biological processes is known as a protein-protein interaction network (PPIN). Complex prediction from PPINs is a challenging task. Most of the previous computation approaches mine cliques, stars, linear and hybrid structures as complexes from PPINs by considering topological features and fewer of them focus on important biological information contained within protein amino acid sequence. In this study, we have computed a wide variety of topological features and integrate them with biological features computed from protein amino acid sequence such as bag of words, physicochemical and spectral domain features. We propose a new Sequential Forward Feature Selection (SFFS) algorithm, i.e., random forest-based Boruta feature selection for selecting the best features from computed large feature set. Decision tree, linear discriminant analysis and gradient boosting classifiers are used as learners. We have conducted experiments by considering two reference protein complex datasets of yeast, i.e., CYC2008 and MIPS. Human and mouse complex information is taken from CORUM 3.0 dataset. Protein interaction information is extracted from the database of interacting proteins (DIP). Our proposed SFFS, i.e., random forest-based Brouta feature selection in combination with decision trees, linear discriminant analysis and Gradient Boosting Classifiers outperforms other state of art algorithms by achieving precision, recall and F-measure rates, i.e. 94.58%, 94.92% and 94.45% for MIPS, 96.31%, 93.55% and 96.02% for CYC2008, 98.84%, 98.00%, 98.87 % for CORUM humans and 96.60%, 96.70%, 96.32% for CORUM mouse dataset complexes, respectively.


Assuntos
Mineração de Dados , Mapas de Interação de Proteínas , Animais , Bases de Dados Factuais , Camundongos , Proteínas
9.
J Med Virol ; 93(7): 4382-4391, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33782990

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has spread around the globe very rapidly. Previously, the evolution pattern and similarity among the COVID-19 causative organism severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and causative organisms of other similar infections have been determined using a single type of genetic marker in different studies. Herein, the SARS-CoV-2 and related ß coronaviruses Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV,  bat coronavirus (BAT-CoV) were comprehensively analyzed using a custom-built pipeline that employed phylogenetic approaches based on multiple types of genetic markers including the whole genome sequences, mutations in nucleotide sequences, mutations in protein sequences, and microsatellites. The whole-genome sequence-based phylogeny revealed that the strains of SARS-CoV-2 are more similar to the BAT-CoV strains. The mutational analysis showed that on average MERS-CoV and BAT-CoV genomes differed at 134.21 and 136.72 sites, respectively, whereas the SARS-CoV genome differed at 26.64 sites from the reference genome of SARS-CoV-2. Furthermore, the microsatellite analysis highlighted a relatively higher number of average microsatellites for MERS-CoV and SARS-CoV-2 (106.8 and 107, respectively), and a lower number for SARS-CoV and BAT-CoV (95.8 and 98.5, respectively). Collectively, the analysis of multiple genetic markers of selected ß viral genomes revealed that the newly born SARS-COV-2 is closely related to BAT-CoV, whereas, MERS-CoV is more distinct from the SARS-CoV-2 than BAT-CoV and SARS-CoV.


Assuntos
Alphacoronavirus/genética , Genoma Viral/genética , Repetições de Microssatélites/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Animais , Sequência de Bases/genética , Quirópteros/virologia , Análise Mutacional de DNA , Marcadores Genéticos/genética , Variação Genética/genética , Humanos , Filogenia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Sequenciamento Completo do Genoma
10.
J Med Syst ; 44(2): 37, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31853655

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative disorder accounting for 70%-80% dementia cases worldwide. Although, research on AD has increased in recent years, however, the complexity associated with brain structure and functions makes the early diagnosis of this disease a challenging task. Resting-state functional magnetic resonance imaging (rs-fMRI) is a neuroimaging technology that has been widely used to study the pathogenesis of neurodegenerative diseases. In literature, the computer-aided diagnosis of AD is limited to binary classification or diagnosis of AD and MCI stages. However, its applicability to diagnose multiple progressive stages of AD is relatively under-studied. This study explores the effectiveness of rs-fMRI for multi-class classification of AD and its associated stages including CN, SMC, EMCI, MCI, LMCI, and AD. A longitudinal cohort of resting-state fMRI of 138 subjects (25 CN, 25 SMC, 25 EMCI, 25 LMCI, 13 MCI, and 25 AD) from Alzheimer's Disease Neuroimaging Initiative (ADNI) is studied. To provide a better insight into deep learning approaches and their applications to AD classification, we investigate ResNet-18 architecture in detail. We consider the training of the network from scratch by using single-channel input as well as performed transfer learning with and without fine-tuning using an extended network architecture. We experimented with residual neural networks to perform AD classification task and compared it with former research in this domain. The performance of the models is evaluated using precision, recall, f1-measure, AUC and ROC curves. We found that our networks were able to significantly classify the subjects. We achieved improved results with our fine-tuned model for all the AD stages with an accuracy of 100%, 96.85%, 97.38%, 97.43%, 97.40% and 98.01% for CN, SMC, EMCI, LMCI, MCI, and AD respectively. However, in terms of overall performance, we achieved state-of-the-art results with an average accuracy of 97.92% and 97.88% for off-the-shelf and fine-tuned models respectively. The Analysis of results indicate that classification and prediction of neurodegenerative brain disorders such as AD using functional magnetic resonance imaging and advanced deep learning methods is promising for clinical decision making and have the potential to assist in early diagnosis of AD and its associated stages.


Assuntos
Doença de Alzheimer/classificação , Doença de Alzheimer/diagnóstico por imagem , Diagnóstico por Computador/métodos , Vias Neurais/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Aprendizado Profundo , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Vias Neurais/patologia , Descanso
11.
Database (Oxford) ; 20182018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295720

RESUMO

Ontologies have gained a lot of popularity and recognition in the semantic web because of their extensive use in Internet-based applications. Ontologies are often considered a fine source of semantics and interoperability in all artificially smart systems. Exponential increase in unstructured data on the web has made automated acquisition of ontology from unstructured text a most prominent research area. Several methodologies exploiting numerous techniques of various fields (machine learning, text mining, knowledge representation and reasoning, information retrieval and natural language processing) are being proposed to bring some level of automation in the process of ontology acquisition from unstructured text. This paper describes the process of ontology learning and further classification of ontology learning techniques into three classes (linguistics, statistical and logical) and discusses many algorithms under each category. This paper also explores ontology evaluation techniques by highlighting their pros and cons. Moreover, it describes the scope and use of ontology learning in several industries. Finally, the paper discusses challenges of ontology learning along with their corresponding future directions.


Assuntos
Inquéritos e Questionários , Vocabulário Controlado , Mineração de Dados , Bases de Dados como Assunto , Humanos , Indústrias , Linguística , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...