Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 745: 135631, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33444674

RESUMO

Flowerpot method of rapid eye movement sleep (REMS) deprivation (REMSD) has been most extensively used in experiments to decipher the functions of REMS. The most common but serious criticism of this method has been presumed stress experienced by the experimental animals. The lack of systematic studies with appropriate controls to resolve this issue prompted this study. We have compared serum corticosterone levels as a marker of stress in male rats under REMSD by the flowerpot method and multiple types of control conditions. Additionally, to maintain consistency and uniformity of REMSD among groups, in the same rats, we estimated brain Na-K ATPase activity, which has been consistently reported to increase upon REMSD. The most effective method was one rat in single- or multiple-platforms set-up in a pool because it significantly increased Na-K ATPase activity without elevating serum corticosterone level. More than one rat in multiple platform set-up was ineffective and must be avoided. Also, large platform- and recovery-controls must be carried out simultaneously to rule out non-specific confounding effects.


Assuntos
Encéfalo/metabolismo , Corticosterona/sangue , Privação do Sono/sangue , Sono REM/fisiologia , Estresse Psicológico/sangue , Animais , Biomarcadores/sangue , Masculino , Ratos , Ratos Wistar , Privação do Sono/psicologia , Estresse Psicológico/psicologia
2.
Nat Sci Sleep ; 10: 143-158, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881316

RESUMO

Rapid eye movement sleep (REMS) is a unique phenomenon essential for maintaining normal physiological processes and is expressed at least in species higher in the evolution. The basic scaffold of the neuronal network responsible for REMS regulation is present in the brainstem, which may be directly or indirectly influenced by most other physiological processes. It is regulated by the neurons in the brainstem. Various manipulations including chemical, elec-trophysiological, lesion, stimulation, behavioral, ontogenic and deprivation studies have been designed to understand REMS genesis, maintenance, physiology and functional significance. Although each of these methods has its significance and limitations, deprivation studies have contributed significantly to the overall understanding of REMS. In this review, we discuss the advantages and limitations of various methods used for REMS deprivation (REMSD) to understand neural regulation and physiological significance of REMS. Among the deprivation strategies, the flowerpot method is by far the method of choice because it is simple and convenient, exploits physiological parameter (muscle atonia) for REMSD and allows conducting adequate controls to overcome experimental limitations as well as to rule out nonspecific effects. Notwithstanding, a major criticism that the flowerpot method faces is that of perceived stress experienced by the experimental animals. Nevertheless, we conclude that like most methods, particularly for in vivo behavioral studies, in spite of a few limitations, given the advantages described above, the flowerpot method is the best method of choice for REMSD studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...