Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27821, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524530

RESUMO

Every year different industries generate numerous toxic environmental polluting agents throughout the world. Among the polluting agents, chromium (Cr) toxicity is a great concern nowadays. It is continuously released in soil and water, causing environmental and health problems thereby raising several public health issues in developing countries like Bangladesh. The primary goal of this study was to provide a bioremediation option to reduce toxic hexavalent chromium to a less toxic trivalent form by isolating chromium resistant bacteria from Cr contaminated environments. Bacterial isolates were obtained from seven tannery waste samples collected from Hazaribag and Hemayetpur, Savar, Dhaka. Twenty morphologically distinct colonies were screened, of which six showed the highest resistance. These were designated as A1, A2, B1, F1, K1, and P1. Their maximum tolerance to Cr (VI) was determined through growth assays in varying chromium concentrations up to 8000 mg/L on LB agar media. Strains A2 and B1 exhibited the highest resistances to chromium at 7700 mg/L and 7200 mg/L respectively. Bacterial strains A2 and B1 were identified through several biochemical tests and after PCR analysis finally identified as Bacillus sp. and Micrococcus sp. respectively. Their Cr (VI) reduction capabilities were assessed quantitatively using the diphenylcarbazide colorimetric assay. Both strains exhibit approximately 100% reduction of chromium from 100 mg/L concentration to non-toxic form within 48 h using accurate analytical methods. This study demonstrates the isolation of highly chromium-resistant bacteria from tannery waste that can efficiently bioremediate Cr (VI) pollution, thus providing an eco-friendly and cost-effective bioremediation approach.

2.
Rev Med Virol ; 34(1): e2505, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282396

RESUMO

Viruses change the host cell metabolism to produce infectious particles and create optimal conditions for replication and reproduction. Numerous host cell pathways have been modified to ensure available biomolecules and sufficient energy. Metabolomics studies conducted over the past decade have revealed that eukaryotic viruses alter the metabolism of their host cells on a large scale. Modifying pathways like glycolysis, fatty acid synthesis and glutaminolysis could provide potential energy for virus multiplication. Thus, almost every virus has a unique metabolic signature and a different relationship between the viral life cycle and the individual metabolic processes. There are enormous research in virus induced metabolic reprogramming of host cells that is being conducted through numerous approaches using different vaccine candidates and antiviral drug substances. This review provides an overview of viral interference to different metabolic pathways and improved monitoring in this area will open up new ways for more effective antiviral therapies and combating virus induced oncogenesis.


Assuntos
Vírus , Humanos , Redes e Vias Metabólicas , Glicólise , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA