Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 17(5): 051501, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720301

RESUMO

On-chip microfluidics are characterized as miniaturized devices that can be either integrated with other components on-chip or can individually serve as a standalone lab-on-a-chip system for a variety of applications ranging from biochemical sensing to macromolecular manipulation. Heterogenous integration with various materials and form factors is, therefore, key to enhancing the performance of such microfluidic systems. The fabrication of complex three-dimensional (3D) microfluidic components that can be easily integrated with other material systems and existing state-of-the-art microfluidics is of rising importance. Research on producing self-assembled 3D architectures by the emerging self-rolled-up membrane (S-RuM) technology may hold the key to such integration. S-RuM technology relies on a strain-induced deformation mechanism to spontaneously transform stacked thin-film materials into 3D cylindrical hollow structures virtually on any kind of substrate. Besides serving as a compact microfluidic chamber, the S-RuM-based on-chip microtubular architecture exhibits several other advantages for microfluidic applications including customizable geometry, biocompatibility, chemical stability, ease of integration, uniform field distributions, and increased surface area to volume ratio. In this Review, we will highlight some of the applications related to molecule/particle sensing, particle delivery, and manipulation that utilized S-RuM technology to their advantage.

2.
ACS Appl Mater Interfaces ; 14(25): 29014-29024, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35700345

RESUMO

Aluminum nitride (AlN) continues to kindle considerable interest in various microelectromechanical system (MEMS)-related fields because of its superior optical, mechanical, thermal, and piezoelectric properties. In this study, we use magnetron sputtering to tailor intrinsic stress in AlN thin films from highly compressive (-1200 MPa) to highly tensile (+700 MPa), with a differential stress of 1900 MPa. By monolithically combining the compressive and tensile ultrathin AlN bilayer membranes (20-60 nm) during deposition, perfectly curved three-dimensional (3D) architectures are spontaneously formed upon dry-releasing from the substrate via a 3D MEMS approach: the complementary metal-oxide-semiconductor (CMOS)-compatible strain-induced self-rolled-up membrane (S-RuM) method. The thermal stability of the AlN 3D architectures is examined, and the curvature of S-RuM microtubes and helical structures as a function of the cumulative membrane thickness and stress are characterized experimentally and simulated using a finite-element physiomechanic method. By combining AlN with various materials such as metal (Cu) and silicon nitride (SiNx), AlN-based hybrid S-RuM microtubes with diameters as small as ∼6 µm are demonstrated with a near-unity yield (∼99%). Compared with other stressed thin films for S-RuMs, including PECVD SiNx, magnetron-sputtered AlN-based S-RuMs show better structural controllability and versatility, probably due to the high Young's modulus and stress uniformity. This work establishes the sputtered AlN thin film as a superior stress-configurable S-RuM shell material for high-performance applications in miniaturizing and integrating electronic components beyond those based on other materials such as SiNx. In addition, for the first time, a single-crystal Al1-xScxN/AlN bilayer grown by molecular beam epitaxy is successfully rolled-up with the diameter varying from ∼9 to 14 µm, paving the way for 3D tubular Al1-xScxN piezoelectric devices.

3.
Microsyst Nanoeng ; 8: 27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310513

RESUMO

On-chip manipulation of charged particles using electrophoresis or electroosmosis is widely used for many applications, including optofluidic sensing, bioanalysis and macromolecular data storage. We hereby demonstrate a technique for the capture, localization, and release of charged particles and DNA molecules in an aqueous solution using tubular structures enabled by a strain-induced self-rolled-up nanomembrane (S-RuM) platform. Cuffed-in 3D electrodes that are embedded in cylindrical S-RuM structures and biased by a constant DC voltage are used to provide a uniform electrical field inside the microtubular devices. Efficient charged-particle manipulation is achieved at a bias voltage of <2-4 V, which is ~3 orders of magnitude lower than the required potential in traditional DC electrophoretic devices. Furthermore, Poisson-Boltzmann multiphysics simulation validates the feasibility and advantage of our microtubular charge manipulation devices over planar and other 3D variations of microfluidic devices. This work lays the foundation for on-chip DNA manipulation for data storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...