Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30595, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726166

RESUMO

Malnutrition, defined as both undernutrition and overnutrition, is a major global health concern affecting millions of people. One possible way to address nutrient deficiency and combat malnutrition is through biofortification. A comprehensive review of the literature was conducted to explore the current state of biofortification research, including techniques, applications, effectiveness and challenges. Biofortification is a promising strategy for enhancing the nutritional condition of at-risk populations. Biofortified varieties of basic crops, including rice, wheat, maize and beans, with elevated amounts of vital micronutrients, such as iron, zinc, vitamin A and vitamin C, have been successfully developed using conventional and advanced technologies. Additionally, the ability to specifically modify crop genomes to improve their nutritional profiles has been made possible by recent developments in genetic engineering, such as CRISPR-Cas9 technology. The health conditions of people have been shown to improve and nutrient deficiencies were reduced when biofortified crops were grown. Particularly in environments with limited resources, biofortification showed considerable promise as a long-term and economical solution to nutrient shortages and malnutrition. To fully exploit the potential of biofortified crops to enhance public health and global nutrition, issues such as consumer acceptance, regulatory permitting and production and distribution scaling up need to be resolved. Collaboration among governments, researchers, non-governmental organizations and the private sector is essential to overcome these challenges and promote the widespread adoption of biofortification as a key part of global food security and nutrition strategies.

2.
Sci Rep ; 12(1): 12661, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879329

RESUMO

One of the key enzymes utilized in the food industry is pullulanase. But its major drawbacks are its low yield and high production costs. In this regard, the current research aims to screen agro-waste substrates for optimal pullulanase production in solid-state fermentation. Of various agro-wastes used as a substrate, the maximum enzymic activity (9.74 U/gds) was observed in a medium based on 5 g of green gram husk and incubated for 3 days at 30 °C. The effects of 16 different nutrients on the yield of pullulanase production were studied using the Plackett-Burman experimental design. The incorporation of FeSO4, MnSO4, and MgSO4 into the pullulanase production medium significantly increased the yield and showed a 5.7-fold increase (56.25 U/gds) in comparison with the unoptimized media. The Box-Behnken experimental design was used to study the effect of interactions between Fe2+, Mg2+, and Mn2+ on the production of pullulanase. Box-Behnken showed a 1.1-fold increase (62.1 U/gds) in pullulanase production. The total increase in yield after all optimization was 6.37-fold. The present study reports for the first time the applicability of green gram husk as a potent substrate for pullulanase production by Penicillium viridicatum.


Assuntos
Penicillium , Fermentação , Glicosídeo Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...