Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G177-G187, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853010

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of chronic liver disease in the United States and worldwide. Nonalcoholic steatohepatitis (NASH), the most advanced form of NAFLD, is characterized by hepatic steatosis associated with inflammation and hepatocyte death. No treatments are currently available for NASH other than lifestyle changes, and the disease lacks specific biomarkers. The signaling lymphocytic activation molecule family 1 (SLAMF1) protein is a self-ligand receptor that plays a role in orchestrating an immune response to some pathogens and cancers. We found that livers from humans and mice with NASH showed a more prominent immunohistochemistry staining for SLAMF1 than non-NASH controls. Furthermore, SLAMF1 levels are significantly increased in NASH plasma samples from mice and humans compared with their respective controls. In mice, the levels of SLAMF1 correlated significantly with the severity of the NASH phenotype. To test whether SLAMF 1 is expressed by hepatocytes, HepG2 cells and primary murine hepatocytes were treated with palmitic acid (PA) to induce a state of lipotoxicity mimicking NASH. We found that PA treatments of HepG2 cells and primary hepatocytes lead to significant increases in SLAMF1 levels. The downregulation of SLAMF1 in HepG2 cells improved the cell viability and reduced cytotoxicity. The in vivo data using mouse and human NASH samples suggests a potential role for this protein as a noninvasive biomarker for NASH. The in vitro data suggest a role for SLAMF1 as a potential therapeutic target to prevent hepatocyte death in response to lipotoxicity.NEW & NOTEWORTHY This study identified for the first time SLAMF1 as a mediator of hepatocyte death in nonalcoholic fatty liver disease (NASH) and as a marker of NASH in humans. There are no pharmacological treatments available for NASH, and diagnostic tools are limited to invasive liver biopsies. Therefore, since SLAMF1 levels correlate with disease progression and SLAMF1 mediates cytotoxic effects, this protein can be used as a therapeutic target and a clinical biomarker of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
2.
J Am Heart Assoc ; 10(17): e015868, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34472367

RESUMO

Background Stress has emerged as an important risk factor for heart disease in women. Stress levels have been shown to correlate with delayed recovery and increased mortality after a myocardial infarction. Therefore, we sought to investigate if the observed sex-specific effects of stress in myocardial infarction may be partly attributed to genomic interactions between the female sex hormones, estrogen (E2), and the primary stress hormones glucocorticoids. Methods and Results Genomewide studies show that glucocorticoids inhibit estrogen-mediated regulation of genes with established roles in cardiomyocyte homeostasis. These include 5-HT2BR (cardiac serotonin receptor 2B), the expression of which is critical to prevent cardiomyocyte death in the adult heart. Using siRNA, gene expression, and chromatin immunoprecipitation assays, we found that 5-HT2BR is a primary target of the glucocorticoid receptor and the estrogen receptor α at the level of transcription. The glucocorticoid receptor blocks the recruitment of estrogen receptor α to the promoter of the 5-HT2BR gene, which may contribute to the adverse effects of stress in the heart of premenopausal women. Using immunoblotting, TUNEL (terminal deoxynucleotidal transferase-mediated biotin-deoxyuridine triphosphate nick-end labeling), and flow cytometry, we demonstrate that estrogen decreases cardiomyocyte death by a mechanism relying on 5-HT2BR expression. In vitro and in vivo experiments show that glucocorticoids inhibit estrogen cardioprotection in response to hypoxia/reoxygenation injury and exacerbate the size of the infarct areas in myocardial infarction. Conclusions These results established a novel mechanism underlying the deleterious effects of stress on female cardiac health in the setting of ischemia/reperfusion.


Assuntos
Estrogênios/metabolismo , Glucocorticoides , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Receptor 5-HT2B de Serotonina , Apoptose , Morte Celular , Receptor alfa de Estrogênio , Feminino , Glucocorticoides/farmacologia , Humanos , Hipóxia , Masculino , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos , Receptores de Glucocorticoides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...