Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(7): 1794-1797, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560865

RESUMO

In this work, we design and experimentally demonstrate the first, to the best of our knowledge, integrated polarization splitters and rotators at blue wavelengths. We develop compact and efficient designs for both a polarization splitter and rotator at a 422-nm wavelength, an important laser-cooling transition for 88Sr+ ions. These devices are fabricated in a 200-mm wafer-scale process and experimentally demonstrated, resulting in a measured polarization-splitter transverse-electric thru-port coupling of 98.0% and transverse-magnetic tap-port coupling of 77.6% for a compact 16-µm-long device and a polarization-rotator conversion efficiency of 92.2% for a separate compact 111-µm-long device. This work paves the way for more sophisticated integrated control of trapped-ion and neutral-atom quantum systems.

2.
Opt Express ; 31(7): 12005-12015, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155822

RESUMO

Silicon nitride (Si3N4) is a versatile waveguide material platform for CMOS foundry-based photonic integrated circuits (PICs) with low loss and high-power handling. The range of applications enabled by this platform is significantly expanded with the addition of a material with large electro-optic and nonlinear coefficients such as lithium niobate. This work examines the heterogeneous integration of thin-film lithium-niobate (TFLN) on silicon-nitride PICs. Bonding approaches are evaluated based on the interface used (SiO2, Al2O3 and direct) to form hybrid waveguide structures. We demonstrate low losses in chip-scale bonded ring resonators of 0.4 dB/cm (intrinsic Q = 8.19 × 105). In addition, we are able to scale the process to demonstrate bonding of full 100-mm TFLN wafers to 200-mm Si3N4 PIC wafers with high layer transfer yield. This will enable future integration with foundry processing and process design kits (PDKs) for applications such as integrated microwave photonics and quantum photonics.

3.
Opt Express ; 30(13): 22562-22571, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224951

RESUMO

Photonically integrated resonators are promising as a platform for enabling ultranarrow linewidth lasers in a compact form factor. Owing to their small size, these integrated resonators suffer from thermal noise that limits the frequency stability of the optical mode to ∼100 kHz. Here, we demonstrate an integrated stimulated Brillouin scattering (SBS) laser based on a large mode-volume annulus resonator that realizes an ultranarrow thermal-noise-limited linewidth of 270 Hz. In practice, yet narrower linewidths are required before integrated lasers can be truly useful for applications such as optical atomic clocks, quantum computing, gravitational wave detection, and precision spectroscopy. To this end, we employ a thermorefractive noise suppression technique utilizing an auxiliary laser to reduce our SBS laser linewidth to 70 Hz. This demonstration showcases the possibility of stabilizing the thermal motion of even the narrowest linewidth chip lasers to below 100 Hz, thereby opening the door to making integrated microresonators practical for the most demanding future scientific endeavors.

4.
Phys Rev Lett ; 129(10): 100502, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112432

RESUMO

Integrated technologies greatly enhance the prospects for practical quantum information processing and sensing devices based on trapped ions. High-speed and high-fidelity ion state readout is critical for any such application. Integrated detectors offer significant advantages for system portability and can also greatly facilitate parallel operations if a separate detector can be incorporated at each ion-trapping location. Here, we demonstrate ion quantum state detection at room temperature utilizing single-photon avalanche diodes (SPADs) integrated directly into the substrate of silicon ion trapping chips. We detect the state of a trapped Sr^{+} ion via fluorescence collection with the SPAD, achieving 99.92(1)% average fidelity in 450 µs, opening the door to the application of integrated state detection to quantum computing and sensing utilizing arrays of trapped ions.

5.
Opt Express ; 28(26): 39606-39617, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379506

RESUMO

In present literature on integrated modulation and filtering, limitations in the extinction ratio are dominantly attributed to a combination of imbalance in interfering wave amplitude, instability of control signals, stray light (e.g., in the cladding), or amplified spontaneous emission from optical amplifiers. Here we show that the existence of optical frequency noise in single longitudinal mode lasers presents an additional limit to the extinction ratio of optical modulators. A simple frequency-domain model is used to describe a linear optical system's response in the presence of frequency noise, and an intuitive picture is given for systems with arbitrary sampling time. Understanding the influence of frequency noise will help guide the design choices of device and system engineers and offer a path toward even higher-extinction optical modulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...