Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NAR Cancer ; 6(1): zcae013, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500596

RESUMO

Nucleotide excision repair (NER) reduces efficacy of treatment with platinum (Pt)-based chemotherapy by removing Pt lesions from DNA. Previous study has identified that missense mutation or loss of the NER genes Excision Repair Cross Complementation Group 1 and 2 (ERCC1 and ERCC2) leads to improved patient outcomes after treatment with Pt-based chemotherapies. Although most NER gene alterations found in patient tumors are missense mutations, the impact of mutations in the remaining nearly 20 NER genes is unknown. Towards this goal, we previously developed a machine learning strategy to predict genetic variants in an essential NER protein, Xeroderma Pigmentosum Complementation Group A (XPA), that disrupt repair. In this study, we report in-depth analyses of a subset of the predicted variants, including in vitro analyses of purified recombinant protein and cell-based assays to test Pt agent sensitivity in cells and determine mechanisms of NER dysfunction. The most NER deficient variant Y148D had reduced protein stability, weaker DNA binding, disrupted recruitment to damage, and degradation. Our findings demonstrate that tumor mutations in XPA impact cell survival after cisplatin treatment and provide valuable mechanistic insights to improve variant effect prediction. Broadly, these findings suggest XPA tumor variants should be considered when predicting chemotherapy response.

2.
J Clin Invest ; 134(7)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271119

RESUMO

Loss of BRCA2 (breast cancer 2) is lethal for normal cells. Yet it remains poorly understood how, in BRCA2 mutation carriers, cells undergoing loss of heterozygosity overcome the lethality and undergo tissue-specific neoplastic transformation. Here, we identified mismatch repair gene mutL homolog 1 (MLH1) as a genetic interactor of BRCA2 whose overexpression supports the viability of Brca2-null cells. Mechanistically, we showed that MLH1 interacts with Flap endonuclease 1 (FEN1) and competes to process the RNA flaps of Okazaki fragments. Together, they restrained the DNA2 nuclease activity on the reversed forks of lagging strands, leading to replication fork (RF) stability in BRCA2-deficient cells. In these cells, MLH1 also attenuated R-loops, allowing the progression of stable RFs, which suppressed genomic instability and supported cell viability. We demonstrated the significance of their genetic interaction by the lethality of Brca2-mutant mice and inhibition of Brca2-deficient tumor growth in mice by Mlh1 loss. Furthermore, we described estrogen as inducing MLH1 expression through estrogen receptor α (ERα), which might explain why the majority of BRCA2 mutation carriers develop ER-positive breast cancer. Taken together, our findings reveal a role of MLH1 in relieving replicative stress and show how it may contribute to the establishment of BRCA2-deficient breast tumors.


Assuntos
Proteína BRCA2 , Neoplasias Mamárias Animais , Animais , Camundongos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Reparo de Erro de Pareamento de DNA , Replicação do DNA
3.
Cell Death Dis ; 14(11): 753, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980415

RESUMO

Pathogenic variants in BRCA2 are known to significantly increase the lifetime risk of developing breast and ovarian cancers. Sequencing-based genetic testing has resulted in the identification of thousands of BRCA2 variants that are considered to be variants of uncertain significance (VUS) because the disease risk associated with them is unknown. One such variant is p.Arg3052Gln, which has conflicting interpretations of pathogenicity in the ClinVar variant database. Arginine at position 3052 in BRCA2 plays an important role in stabilizing its C-terminal DNA binding domain. We have generated a knock-in mouse model expressing this variant to examine its role on growth and survival in vivo. Homozygous as well as hemizygous mutant mice are viable, fertile and exhibit no overt phenotype. While we did not observe any hematopoietic defects in adults, we did observe a marked reduction in the in vitro proliferative ability of fetal liver cells that were also hypersensitive to PARP inhibitor, olaparib. In vitro studies performed on embryonic and adult fibroblasts derived from the mutant mice showed significant reduction in radiation induced RAD51 foci formation as well as increased genomic instability after mitomycin C treatment. We observed mis-localization of a fraction of R3052Q BRCA2 protein to the cytoplasm which may explain the observed in vitro phenotypes. Our findings suggest that BRCA2 R3052Q should be considered as a hypomorphic variant.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Testes Genéticos , Neoplasias Ovarianas/genética , Homozigoto , Neoplasias da Mama/genética , Proteína BRCA1/genética , Predisposição Genética para Doença
4.
Nat Commun ; 14(1): 6140, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783689

RESUMO

DNA replication and repair defects or genotoxic treatments trigger interferon (IFN)-mediated inflammatory responses. However, whether and how IFN signaling in turn impacts the DNA replication process has remained elusive. Here we show that basal levels of the IFN-stimulated gene 15, ISG15, and its conjugation (ISGylation) are essential to protect nascent DNA from degradation. Moreover, IFNß treatment restores replication fork stability in BRCA1/2-deficient cells, which strictly depends on topoisomerase-1, and rescues lethality of BRCA2-deficient mouse embryonic stem cells. Although IFNß activates hundreds of genes, these effects are specifically mediated by ISG15 and ISGylation, as their inactivation suppresses the impact of IFNß on DNA replication. ISG15 depletion significantly reduces cell proliferation rates in human BRCA1-mutated triple-negative, whereas its upregulation results in increased resistance to the chemotherapeutic drug cisplatin in mouse BRCA2-deficient breast cancer cells, respectively. Accordingly, cells carrying BRCA1/2 defects consistently show increased ISG15 levels, which we propose as an in-built mechanism of drug resistance linked to BRCAness.


Assuntos
Proteína BRCA1 , Interferons , Animais , Humanos , Camundongos , Proteína BRCA1/genética , Sobrevivência Celular , Proteína BRCA2/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Citocinas/metabolismo
5.
Mol Cell Oncol ; 7(6): 1827904, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33235920

RESUMO

Chemoresistance remains to be a common and significant hurdle with all chemotherapies. Tumors gain resistance by acquiring additional mutations. Some of the chemoresistance mechanisms are known and can be tackled. However, the majority of chemoresistance mechanisms are unknown. Our recent findings shed light on one such unknown mechanism. We identified a novel role for 5-hydroxymethycytosine (5hmC), an epigenetic mark on the DNA, in maintaining the integrity of stalled replication forks and its impact on genomic stability and chemoresistance.

6.
Sci Signal ; 13(645)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32817374

RESUMO

Synthetic lethality between poly(ADP-ribose) polymerase (PARP) inhibition and BRCA deficiency is exploited to treat breast and ovarian tumors. However, resistance to PARP inhibitors (PARPis) is common. To identify potential resistance mechanisms, we performed a genome-wide RNAi screen in BRCA2-deficient mouse embryonic stem cells and validation in KB2P1.21 mouse mammary tumor cells. We found that resistance to multiple PARPi emerged with reduced expression of TET2 (ten-eleven translocation), which promotes DNA demethylation by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethycytosine (5hmC) and other products. TET2 knockdown in BRCA2-deficient cells protected stalled replication forks (RFs). Increasing 5hmC abundance induced the degradation of stalled RFs in KB2P1.21 and human cancer cells by recruiting the base excision repair-associated apurinic/apyrimidinic endonuclease APE1, independent of the BRCA2 status. TET2 loss did not affect the recruitment of the repair protein RAD51 to sites of double-strand breaks (DSBs) or the abundance of proteins associated with RF integrity. The loss of TET2, of its product 5hmC, and of APE1 recruitment to stalled RFs promoted resistance to the chemotherapeutic cisplatin. Our findings reveal a previously unknown role for the epigenetic mark 5hmC in maintaining the integrity of stalled RFs and a potential resistance mechanism to PARPi and cisplatin.


Assuntos
Neoplasias da Mama/genética , Replicação do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Desoxicitidina/análogos & derivados , Instabilidade Genômica/genética , Neoplasias Ovarianas/genética , 5-Metilcitosina/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Desoxicitidina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA