Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 74(2): 159-184, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34402087

RESUMO

Bacterial species capable of performing both nitrification and denitrification in a single vessel under similar conditions have gained significance in the wastewater treatment scenario considering their unique character of performing the above reactions under heterotrophic and aerobic conditions respectively. Such a novel strategy often referred to as simultaneous nitrification and denitrification (SND) has a tremendous potential in dealing with various wastewaters having low C : N content, considering that the process needs very little or no external carbon source and oxygen supply thus adding to its cost-effective and environmentally friendly nature. Though like other micro-organisms, heterotrophic nitrifiers and aerobic denitrifiers convert inorganic or organic nitrogen-containing substances into harmless dinitrogen gas in the wastewater, their ecophysiological role in the global nitrogen cycle is still not fully understood. Attempts to highlight the role played by the heterotrophic nitrifiers and aerobic denitrifiers in dealing with nitrogen pollution under various environmental operating conditions will help in developing a mechanistic understanding of the SND process to address the issues faced by the traditional methods of aerobic autotrophic nitrification-anaerobic heterotrophic denitrification.


Assuntos
Nitrificação , Purificação da Água , Aerobiose , Desnitrificação , Nitrogênio , Águas Residuárias
2.
Adv Appl Microbiol ; 97: 121-170, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27926430

RESUMO

Microbial capacities drive waste stabilization and resource recovery in environmental friendly processes. Depending on the composition of waste, a stress-mediated selection process ensures a scenario that generates a specific enrichment of microbial community. These communities dynamically change over a period of time while keeping the performance through the required utilization capacities. Depending on the environmental conditions, these communities select the appropriate partners so as to maintain the desired functional capacities. However, the complexities of these organizations are difficult to study. Individual member ratios and sharing of genetic intelligence collectively decide the enrichment and survival of these communities. The next-generation sequencing options with the depth of structure and function analysis have emerged as a tool that could provide the finer details of the underlying bioprocesses associated and shared in environmental niches. These tools can help in identification of the key biochemical events and monitoring of expression of associated phenotypes that will support the operation and maintenance of waste management systems. In this chapter, we link genomic tools with process optimization and/or management, which could be applied for decision making and/or upscaling. This review describes both, the aerobic and anaerobic, options of waste utilization process with the microbial community functioning as flocs, granules, or biofilms. There are a number of challenges involved in harnessing the microbial community intelligence with associated functional plasticity for efficient extension of microbial capacities for resource recycling and waste management. Mismanaged wastes could lead to undesired genotypes such as antibiotic/multidrug-resistant microbes.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Genômica , Bactérias/isolamento & purificação , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Genômica/instrumentação , Genômica/métodos , Gerenciamento de Resíduos
3.
Environ Technol ; 26(5): 545-52, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15974272

RESUMO

Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.


Assuntos
Conservação dos Recursos Naturais , Plásticos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Conservação dos Recursos Naturais/economia , Controle de Custos , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...