Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(39): e2303590120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729196

RESUMO

Site-specific proteolysis by the enzymatic cleavage of small linear sequence motifs is a key posttranslational modification involved in physiology and disease. The ability to robustly and rapidly predict protease-substrate specificity would also enable targeted proteolytic cleavage by designed proteases. Current methods for predicting protease specificity are limited to sequence pattern recognition in experimentally derived cleavage data obtained for libraries of potential substrates and generated separately for each protease variant. We reasoned that a more semantically rich and robust model of protease specificity could be developed by incorporating the energetics of molecular interactions between protease and substrates into machine learning workflows. We present Protein Graph Convolutional Network (PGCN), which develops a physically grounded, structure-based molecular interaction graph representation that describes molecular topology and interaction energetics to predict enzyme specificity. We show that PGCN accurately predicts the specificity landscapes of several variants of two model proteases. Node and edge ablation tests identified key graph elements for specificity prediction, some of which are consistent with known biochemical constraints for protease:substrate recognition. We used a pretrained PGCN model to guide the design of protease libraries for cleaving two noncanonical substrates, and found good agreement with experimental cleavage results. Importantly, the model can accurately assess designs featuring diversity at positions not present in the training data. The described methodology should enable the structure-based prediction of specificity landscapes of a wide variety of proteases and the construction of tailor-made protease editors for site-selectively and irreversibly modifying chosen target proteins.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Peptídeo Hidrolases/genética , Proteólise , Conscientização , Aprendizado de Máquina
3.
ACS Omega ; 8(29): 26590-26596, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521667

RESUMO

An arylazopyrazole was explored for its use as an enhanced photoswitchable amino acid in genetic code expansion. This new unnatural amino acid was successfully incorporated into proteins in both bacterial and mammalian cells. While photocontrol of translation required pulsed irradiations, complete selectivity for the trans-configuration by the pyrrolysyl tRNA synthetase was observed, demonstrating expression of a gene of interest selectively controlled via light exposure.

4.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37261904

RESUMO

Given the COVID-19 pandemic, there is interest in understanding ligand-receptor features and targeted antibody-binding attributes against emerging SARS-CoV-2 variants. Here, we developed a large-scale structure-based pipeline for analysis of protein-protein interactions regulating SARS-CoV-2 immune evasion. First, we generated computed structural models of the Spike protein of 3 SARS-CoV-2 variants (B.1.1.529, BA.2.12.1, and BA.5) bound either to a native receptor (ACE2) or to a large panel of targeted ligands (n = 282), which included neutralizing or therapeutic monoclonal antibodies. Moreover, by using the Barnes classification, we noted an overall loss of interfacial interactions (with gain of new interactions in certain cases) at the receptor-binding domain (RBD) mediated by substituted residues for neutralizing complexes in classes 1 and 2, whereas less destabilization was observed for classes 3 and 4. Finally, an experimental validation of predicted weakened therapeutic antibody binding was performed in a cell-based assay. Compared with the original Omicron variant (B.1.1.529), derivative variants featured progressive destabilization of antibody-RBD interfaces mediated by a larger set of substituted residues, thereby providing a molecular basis for immune evasion. This approach and findings provide a framework for rapidly and efficiently generating structural models for SARS-CoV-2 variants bound to ligands of mechanistic and therapeutic value.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Evasão da Resposta Imune , Ligantes , Pandemias , Anticorpos Monoclonais
5.
Heliyon ; 9(4): e15032, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035348

RESUMO

The human infectious disease COVID-19 caused by the SARS-CoV-2 virus has become a major threat to global public health. Developing a vaccine is the preferred prophylactic response to epidemics and pandemics. However, for individuals who have contracted the disease, the rapid design of antibodies that can target the SARS-CoV-2 virus fulfils a critical need. Further, discovering antibodies that bind multiple variants of SARS-CoV-2 can aid in the development of rapid antigen tests (RATs) which are critical for the identification and isolation of individuals currently carrying COVID-19. Here we provide a proof-of-concept study for the computational design of high-affinity antibodies that bind to multiple variants of the SARS-CoV-2 spike protein using RosettaAntibodyDesign (RAbD). Well characterized antibodies that bind with high affinity to the SARS-CoV-1 (but not SARS-CoV-2) spike protein were used as templates and re-designed to bind the SARS-CoV-2 spike protein with high affinity, resulting in a specificity switch. A panel of designed antibodies were experimentally validated. One design bound to a broad range of variants of concern including the Omicron, Delta, Wuhan, and South African spike protein variants.

6.
Curr Opin Struct Biol ; 80: 102579, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060757

RESUMO

The aggregation of Alpha Synuclein (α-Syn) into fibrils is associated with the pathology of several neurodegenerative diseases. Pathologic aggregates of α-Syn adopt multiple fibril topologies and are known to be transferred between cells via templated seeding. Monomeric α-Syn is an intrinsically disordered protein (IDP) with amphiphilic N-terminal, hydrophobic-central, and negatively charged C-terminal domains. Here, we review recent work elucidating the mechanism of α-Syn aggregation and identify the key and multifaceted roles played by the N- and C-terminal domains in the initiation and growth of aggregates as well as in the templated seeding involved in cell-to-cell propagation. The charge content of the C-terminal domain, which is sensitive to environmental conditions like organelle pH, is a key regulator of intermolecular interactions involved in fibril growth and templated propagation. An appreciation of the complex and multifaceted roles played by the intrinsically disordered terminal domains suggests novel opportunities for the development of potent inhibitors against synucleinopathies.


Assuntos
Proteínas Intrinsicamente Desordenadas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Humanos
7.
J Inorg Biochem ; 244: 112206, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37030124

RESUMO

Precise metal-protein coordination by design remains a considerable challenge. Polydentate, high-metal-affinity protein modifications, both chemical and recombinant, can enable metal localization. However, these constructs are often bulky, conformationally and stereochemically ill-defined, or coordinately saturated. Here, we expand the biomolecular metal-coordination toolbox with the irreversible attachment to cysteine of bis(1-methylimidazol-2-yl)ethene ("BMIE"), which generates a compact imidazole-based metal-coordinating ligand. Conjugate additions of small-molecule thiols (thiocresol and N-Boc-Cys) with BMIE confirm general thiol reactivity. The BMIE adducts are shown to complex the divalent metal ions Cu++ and Zn++ in bidentate (N2) and tridentate (N2S*) coordination geometries. Cysteine-targeted BMIE modification (>90% yield at pH 8.0) of a model protein, the S203C variant of carboxypeptidase G2 (CPG2), measured with ESI-MS, confirms its utility as a site-selective bioconjugation method. ICP-MS analysis confirms mono-metallation of the BMIE-modified CPG2 protein with Zn++, Cu++, and Co++. EPR characterization of the BMIE-modified CPG2 protein reveals the structural details of the site selective 1:1 BMIE-Cu++ coordination and symmetric tetragonal geometry under physiological conditions and in the presence of various competing and exchangeable ligands (H2O/HO-, tris, and phenanthroline). An X-ray protein crystal structure of BMIE-modified CPG2-S203C demonstrates that the BMIE modification is minimally disruptive to the overall protein structure, including the carboxypeptidase active sites, although Zn++ metalation could not be conclusively discerned at the resolution obtained. The carboxypeptidase catalytic activity of BMIE-modified CPG2-S203C was also assayed and found to be minimally affected. These features, combined with ease of attachment, define the new BMIE-based ligation as a versatile metalloprotein design tool, and enable future catalytic and structural applications.


Assuntos
Metaloproteínas , Metaloproteínas/química , Cisteína , Zinco/química , Metais , Peptídeo Hidrolases , Imidazóis , Compostos de Sulfidrila/química , Cobre/química , Cristalografia por Raios X , Ligantes
8.
Biomacromolecules ; 24(4): 1798-1809, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36996092

RESUMO

End-capped peptides modified with reactive functional groups on the N-terminus provide a route to prepare peptide-polymer conjugates for a broad range of applications. Unfortunately, current chemical methods to construct modified peptides rely largely on solid-phase peptide synthesis (SPPS), which lacks green preparative characteristics and is costly, thus limiting its applicability to specialty applications such as regenerative medicine. This work evaluates N-terminally modified N-acryloyl-glutamic acid diethyl ester, N-acryloyl-leucine ethyl ester, and N-acryloyl-alanine ethyl ester as grafters and papain as the protease for the direct addition of amino acid ethyl ester (AA-OEt) monomers via protease-catalyzed peptide synthesis (PCPS) and the corresponding formation of N-acryloyl-functionalized oligopeptides in a one-pot aqueous reaction. It was hypothesized that by building N-acryloyl grafters from AA-OEt monomers that are known to be good substrates for papain in PCPS, the corresponding grafters would yield high grafter conversions, high ratio of grafter-oligopeptide to free NH2-oligopeptide, and high overall yield. However, this work demonstrates based on the grafter/monomers studied herein that the dominant factor in N-acryloyl-AA-OEt grafter conversion is the co-monomer used in co-oligomerizations. Computational modeling using Rosetta qualitatively recapitulates the results and provides insight into the structural and energetic bases underlying substrate selectivity. The findings herein expand our knowledge of factors that determine the efficiency of preparing N-acryloyl-terminated oligopeptides by PCPS that could provide practical routes to peptide macromers for conjugation to polymers and surfaces for a broad range of applications.


Assuntos
Aminoácidos , Peptídeo Hidrolases , Papaína/química , Peptídeos/química , Oligopeptídeos/química , Polímeros , Catálise , Ésteres
9.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778399

RESUMO

Although the rapid development of therapeutic responses to combat SARS-CoV-2 represents a great human achievement, it also demonstrates untapped potential for advanced pandemic preparedness. Cross-species efficacy against multiple human coronaviruses by the main protease (MPro) inhibitor nirmatrelvir raises the question of its breadth of inhibition and our preparedness against future coronaviral threats. Herein, we describe sequence and structural analyses of 346 unique MPro enzymes from all coronaviruses represented in the NCBI Virus database. Cognate substrates of these representative proteases were inferred from their polyprotein sequences. We clustered MPro sequences based on sequence identity and AlphaFold2-predicted structures, showing approximate correspondence with known viral subspecies. Predicted structures of five representative MPros bound to their inferred cognate substrates showed high conservation in protease:substrate interaction modes, with some notable differences. Yeast-based proteolysis assays of the five representatives were able to confirm activity of three on inferred cognate substrates, and demonstrated that of the three, only one was effectively inhibited by nirmatrelvir. Our findings suggest that comprehensive preparedness against future potential coronaviral threats will require continued inhibitor development. Our methods may be applied to candidate coronaviral MPro inhibitors to evaluate in advance the breadth of their inhibition and identify target coronaviruses potentially meriting advanced development of alternative countermeasures.

10.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824945

RESUMO

Site-specific proteolysis by the enzymatic cleavage of small linear sequence motifs is a key post-translational modification involved in physiology and disease. The ability to robustly and rapidly predict protease substrate specificity would also enable targeted proteolytic cleavage - editing - of a target protein by designed proteases. Current methods for predicting protease specificity are limited to sequence pattern recognition in experimentally-derived cleavage data obtained for libraries of potential substrates and generated separately for each protease variant. We reasoned that a more semantically rich and robust model of protease specificity could be developed by incorporating the three-dimensional structure and energetics of molecular interactions between protease and substrates into machine learning workflows. We present Protein Graph Convolutional Network (PGCN), which develops a physically-grounded, structure-based molecular interaction graph representation that describes molecular topology and interaction energetics to predict enzyme specificity. We show that PGCN accurately predicts the specificity landscapes of several variants of two model proteases: the NS3/4 protease from the Hepatitis C virus (HCV) and the Tobacco Etch Virus (TEV) proteases. Node and edge ablation tests identified key graph elements for specificity prediction, some of which are consistent with known biochemical constraints for protease:substrate recognition. We used a pre-trained PGCN model to guide the design of TEV protease libraries for cleaving two non-canonical substrates, and found good agreement with experimental cleavage results. Importantly, the model can accurately assess designs featuring diversity at positions not present in the training data. The described methodology should enable the structure-based prediction of specificity landscapes of a wide variety of proteases and the construction of tailor-made protease editors for site-selectively and irreversibly modifying chosen target proteins.

11.
Biophys Rev ; 14(6): 1281-1301, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474933

RESUMO

As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) "Resolution Revolution" made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.

12.
Chem Sci ; 13(29): 8550-8556, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35974764

RESUMO

Organophosphonate compounds have represented a rich source of biologically active compounds, including enzyme inhibitors, antibiotics, and antimalarial agents. Here, we report the development of a highly stereoselective strategy for olefin cyclopropanation in the presence of a phosphonyl diazo reagent as carbene precursor. In combination with a 'substrate walking' protein engineering strategy, two sets of efficient and enantiodivergent myoglobin-based biocatalysts were developed for the synthesis of both (1R,2S) and (1S,2R) enantiomeric forms of the desired cyclopropylphosphonate ester products. This methodology enables the efficient transformation of a broad range of vinylarene substrates at a preparative scale (i.e. gram scale) with up to 99% de and ee. Mechanistic studies provide insights into factors that contribute to make this reaction inherently more challenging than hemoprotein-catalyzed olefin cyclopropanation with ethyl diazoacetate investigated previously. This work expands the range of synthetically useful, enzyme-catalyzed transformations and paves the way to the development of metalloprotein catalysts for abiological carbene transfer reactions involving non-canonical carbene donor reagents.

13.
ACS Chem Biol ; 17(7): 1924-1936, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35776893

RESUMO

DNA polymerases have evolved to feature a highly conserved activity across the tree of life: formation of, without exception, internucleotidyl O-P linkages. Can this linkage selectivity be overcome by design to produce xenonucleic acids? Here, we report that the structure-guided redesign of an archaeal DNA polymerase, 9°N, exhibits a new activity undetectable in the wild-type enzyme: catalyzing the formation of internucleotidyl N-P linkages using 3'-NH2-ddNTPs. Replacing a metal-binding aspartate in the 9°N active site with asparagine was key to the emergence of this unnatural enzyme activity. MD simulations provided insights into how a single substitution enhances the productive positioning of a 3'-amino nucleophile in the active site. Further remodeling of the protein-nucleic acid interface in the finger subdomain yielded a quadruple-mutant variant (9°N-NRQS) displaying DNA-dependent NP-DNA polymerase activity. In addition, the engineered promiscuity of 9°N-NRQS was leveraged for one-pot synthesis of DNA─NP-DNA copolymers. This work sheds light on the molecular basis of substrate fidelity and latent promiscuity in enzymes.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , Domínio Catalítico , DNA/química , Replicação do DNA , DNA Arqueal , DNA Polimerase Dirigida por DNA/metabolismo
14.
Biochemistry ; 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612958

RESUMO

Enhancing the thermostability of enzymes without impacting their catalytic function represents an important yet challenging goal in protein engineering and biocatalysis. We recently introduced a novel method for enzyme thermostabilization that relies on the computationally guided installation of genetically encoded thioether "staples" into a protein via cysteine alkylation with the noncanonical amino acid O-2-bromoethyl tyrosine (O2beY). Here, we demonstrate the functionality of an expanded set of electrophilic amino acids featuring chloroacetamido, acrylamido, and vinylsulfonamido side-chain groups for protein stapling using this strategy. Using a myoglobin-based cyclopropanase as a model enzyme, our studies show that covalent stapling with p-chloroacetamido-phenylalanine (pCaaF) provides higher stapling efficiency and enhanced stability (thermodynamic and kinetic) compared to the other stapled variants and the parent protein. Interestingly, molecular simulations of conformational flexibility of the cross-links show that the pCaaF staple allows fewer energetically feasible conformers than the other staples, and this property may be a broader indicator of stability enhancement. Using this strategy, pCaaF-stapled variants with significantly enhanced stability against thermal denaturation (ΔTm' = +27 °C) and temperature-induced heme loss (ΔT50 = +30 °C) were obtained while maintaining high levels of catalytic activity and stereoselectivity. Crystallographic analyses of singly and doubly stapled variants provide key insights into the structural basis for stabilization, which includes both direct interactions of the staples with protein residues and indirect interactions through adjacent residues involved in heme binding. This work expands the toolbox of protein stapling strategies available for protein stabilization.

15.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511693

RESUMO

Evaluation of immunogenic epitopes for universal vaccine development in the face of ongoing SARS-CoV-2 evolution remains a challenge. Herein, we investigate the genetic and structural conservation of an immunogenically relevant epitope (C662-C671) of spike (S) protein across SARS-CoV-2 variants to determine its potential utility as a broad-spectrum vaccine candidate against coronavirus diseases. Comparative sequence analysis, structural assessment, and molecular dynamics simulations of C662-C671 epitope were performed. Mathematical tools were employed to determine its mutational cost. We found that the amino acid sequence of C662-C671 epitope is entirely conserved across the observed major variants of SARS-CoV-2 in addition to SARS-CoV. Its conformation and accessibility are predicted to be conserved, even in the highly mutated Omicron variant. Costly mutational rate in the context of energy expenditure in genome replication and translation can explain this strict conservation. These observations may herald an approach to developing vaccine candidates for universal protection against emergent variants of coronavirus.


Assuntos
COVID-19 , Vacinas , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
16.
Proc Natl Acad Sci U S A ; 119(15): e2116097119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377786

RESUMO

Confining the activity of a designed protein to a specific microenvironment would have broad-ranging applications, such as enabling cell type-specific therapeutic action by enzymes while avoiding off-target effects. While many natural enzymes are synthesized as inactive zymogens that can be activated by proteolysis, it has been challenging to redesign any chosen enzyme to be similarly stimulus responsive. Here, we develop a massively parallel computational design, screening, and next-generation sequencing-based approach for proenzyme design. For a model system, we employ carboxypeptidase G2 (CPG2), a clinically approved enzyme that has applications in both the treatment of cancer and controlling drug toxicity. Detailed kinetic characterization of the most effectively designed variants shows that they are inhibited by ∼80% compared to the unmodified protein, and their activity is fully restored following incubation with site-specific proteases. Introducing disulfide bonds between the pro- and catalytic domains based on the design models increases the degree of inhibition to 98% but decreases the degree of restoration of activity by proteolysis. A selected disulfide-containing proenzyme exhibits significantly lower activity relative to the fully activated enzyme when evaluated in cell culture. Structural and thermodynamic characterization provides detailed insights into the prodomain binding and inhibition mechanisms. The described methodology is general and could enable the design of a variety of proproteins with precise spatial regulation.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Precursores Enzimáticos , Engenharia de Proteínas , gama-Glutamil Hidrolase , Domínio Catalítico , Desenho de Fármacos/métodos , Precursores Enzimáticos/química , Precursores Enzimáticos/farmacologia , Humanos , Células PC-3 , Engenharia de Proteínas/métodos , gama-Glutamil Hidrolase/química , gama-Glutamil Hidrolase/farmacologia
17.
J Am Chem Soc ; 144(6): 2590-2602, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107997

RESUMO

The biocatalytic toolbox has recently been expanded to include enzyme-catalyzed carbene transfer reactions not occurring in Nature. Herein, we report the development of a biocatalytic strategy for the synthesis of enantioenriched α-trifluoromethyl amines through an asymmetric N-H carbene insertion reaction catalyzed by engineered variants of cytochrome c552 from Hydrogenobacter thermophilus. Using a combination of protein and substrate engineering, this metalloprotein scaffold was redesigned to enable the synthesis of chiral α-trifluoromethyl amino esters with up to >99% yield and 95:5 er using benzyl 2-diazotrifluoropropanoate as the carbene donor. When the diazo reagent was varied, the enantioselectivity of the enzyme could be inverted to produce the opposite enantiomers of these products with up to 99.5:0.5 er. This methodology is applicable to a broad range of aryl amine substrates, and it can be leveraged to obtain chemoenzymatic access to enantioenriched ß-trifluoromethyl-ß-amino alcohols and halides. Computational analyses provide insights into the interplay of protein- and reagent-mediated control on the enantioselectivity of this reaction. This work introduces the first example of a biocatalytic N-H carbenoid insertion with an acceptor-acceptor carbene donor, and it offers a biocatalytic solution for the enantioselective synthesis of α-trifluoromethylated amines as valuable synthons for medicinal chemistry and the synthesis of bioactive molecules.


Assuntos
Aminas/síntese química , Grupo dos Citocromos c/química , Hidrocarbonetos Fluorados/síntese química , Aminas/metabolismo , Compostos Azo/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Evolução Molecular Direcionada , Heme/química , Mutação , Ligação Proteica , Engenharia de Proteínas , Estereoisomerismo
18.
bioRxiv ; 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34931193

RESUMO

There is enormous ongoing interest in characterizing the binding properties of the SARS-CoV-2 Omicron Variant of Concern (VOC) (B.1.1.529), which continues to spread towards potential dominance worldwide. To aid these studies, based on the wealth of available structural information about several SARS-CoV-2 variants in the Protein Data Bank (PDB) and a modeling pipeline we have previously developed for tracking the ongoing global evolution of SARS-CoV-2 proteins, we provide a set of computed structural models (henceforth models) of the Omicron VOC receptor-binding domain (omRBD) bound to its corresponding receptor Angiotensin-Converting Enzyme (ACE2) and a variety of therapeutic entities, including neutralizing and therapeutic antibodies targeting previously-detected viral strains. We generated bound omRBD models using both experimentally-determined structures in the PDB as well as machine learningbased structure predictions as starting points. Examination of ACE2-bound omRBD models reveals an interdigitated multi-residue interaction network formed by omRBD-specific substituted residues (R493, S496, Y501, R498) and ACE2 residues at the interface, which was not present in the original Wuhan-Hu-1 RBD-ACE2 complex. Emergence of this interaction network suggests optimization of a key region of the binding interface, and positive cooperativity among various sites of residue substitutions in omRBD mediating ACE2 binding. Examination of neutralizing antibody complexes for Barnes Class 1 and Class 2 antibodies modeled with omRBD highlights an overall loss of interfacial interactions (with gain of new interactions in rare cases) mediated by substituted residues. Many of these substitutions have previously been found to independently dampen or even ablate antibody binding, and perhaps mediate antibody-mediated neutralization escape ( e.g ., K417N). We observe little compensation of corresponding interaction loss at interfaces when potential escape substitutions occur in combination. A few selected antibodies ( e.g ., Barnes Class 3 S309), however, feature largely unaltered or modestly affected protein-protein interfaces. While we stress that only qualitative insights can be obtained directly from our models at this time, we anticipate that they can provide starting points for more detailed and quantitative computational characterization, and, if needed, redesign of monoclonal antibodies for targeting the Omicron VOC Spike protein. In the broader context, the computational pipeline we developed provides a framework for rapidly and efficiently generating retrospective and prospective models for other novel variants of SARS-CoV-2 bound to entities of virological and therapeutic interest, in the setting of a global pandemic.

19.
Nat Commun ; 12(1): 6947, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845212

RESUMO

Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework, and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours.


Assuntos
Substâncias Macromoleculares/química , Simulação de Acoplamento Molecular , Proteínas/química , Software/normas , Benchmarking , Sítios de Ligação , Humanos , Ligantes , Substâncias Macromoleculares/metabolismo , Ligação Proteica , Proteínas/metabolismo , Reprodutibilidade dos Testes
20.
Protein Sci ; 30(8): 1640-1652, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33969560

RESUMO

Cyc2 is the key protein in the outer membrane of Acidithiobacillus ferrooxidans that mediates electron transfer between extracellular inorganic iron and the intracellular central metabolism. This cytochrome c is specific for iron and interacts with periplasmic proteins to complete a reversible electron transport chain. A structure of Cyc2 has not yet been characterized experimentally. Here we describe a structural model of Cyc2, and associated proteins, to highlight a plausible mechanism for the ferrous iron electron transfer chain. A comparative modeling protocol specific for trans membrane beta barrel (TMBB) proteins in acidophilic conditions (pH ~ 2) was applied to the primary sequence of Cyc2. The proposed structure has three main regimes: Extracellular loops exposed to low-pH conditions, a TMBB, and an N-terminal cytochrome-like region within the periplasmic space. The Cyc2 model was further refined by identifying likely iron and heme docking sites. This represents the first computational model of Cyc2 that accounts for the membrane microenvironment and the acidity in the extracellular matrix. This approach can be used to model other TMBBs which can be critical for chemolithotrophic microbial growth.


Assuntos
Acidithiobacillus , Proteínas da Membrana Bacteriana Externa , Transporte de Elétrons , Acidithiobacillus/química , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Simulação por Computador , Citocromos c/química , Citocromos c/genética , Citocromos c/metabolismo , Ferro/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica em Folha beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...