Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nat Commun ; 14(1): 7796, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016982

RESUMO

Charge ordered kagome lattices have been demonstrated to be intriguing platforms for studying the intertwining of topology, correlation, and magnetism. The recently discovered charge ordered kagome material ScV6Sn6 does not feature a magnetic groundstate or excitations, thus it is often regarded as a conventional paramagnet. Here, using advanced muon-spin rotation spectroscopy, we uncover an unexpected hidden magnetism of the charge order. We observe an enhancement of the internal field width sensed by the muon ensemble, which takes place within the charge ordered state. More importantly, the muon spin relaxation rate below the charge ordering temperature is substantially enhanced by applying an external magnetic field. Taken together with the hidden magnetism found in AV3Sb5 (A = K, Rb, Cs) and FeGe kagome systems, our results suggest ubiqitous time-reversal symmetry-breaking in charge ordered kagome lattices.

2.
Nat Commun ; 14(1): 153, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631467

RESUMO

Unconventional superconductors often feature competing orders, small superfluid density, and nodal electronic pairing. While unusual superconductivity has been proposed in the kagome metals AV3Sb5, key spectroscopic evidence has remained elusive. Here we utilize pressure-tuned and ultra-low temperature muon spin spectroscopy to uncover the unconventional nature of superconductivity in RbV3Sb5 and KV3Sb5. At ambient pressure, we observed time-reversal symmetry breaking charge order below [Formula: see text] 110 K in RbV3Sb5 with an additional transition at [Formula: see text] 50 K. Remarkably, the superconducting state displays a nodal energy gap and a reduced superfluid density, which can be attributed to the competition with the charge order. Upon applying pressure, the charge-order transitions are suppressed, the superfluid density increases, and the superconducting state progressively evolves from nodal to nodeless. Once optimal superconductivity is achieved, we find a superconducting pairing state that is not only fully gapped, but also spontaneously breaks time-reversal symmetry. Our results point to unprecedented tunable nodal kagome superconductivity competing with time-reversal symmetry-breaking charge order and offer unique insights into the nature of the pairing state.

3.
J Phys Condens Matter ; 34(48)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36202080

RESUMO

We report muon spin rotation (µSR) experiments on the microscopic properties of superconductivity and magnetism in the kagome superconductor CeRu2withTc≃5 K. From the measurements of the temperature-dependent magnetic penetration depthλ, the superconducting order parameter exhibits nodeless pairing, which fits best to an anisotropics-wave gap symmetry. We further show that theTc/λ-2ratio is comparable to that of unconventional superconductors. Furthermore, the powerful combination of zero-field (ZF)-µSR and high-fieldµSR has been used to uncover magnetic responses across three characteristic temperatures, identified asT1∗≃110 K,T2∗≃65 K, andT3∗≃40 K. Our experiments classify CeRu2as an exceedingly rare nodeless magnetic kagome superconductor.

4.
Nature ; 602(7896): 245-250, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140387

RESUMO

The kagome lattice1, which is the most prominent structural motif in quantum physics, benefits from inherent non-trivial geometry so that it can host diverse quantum phases, ranging from spin-liquid phases, to topological matter, to intertwined orders2-8 and, most rarely, to unconventional superconductivity6,9. Recently, charge sensitive probes have indicated that the kagome superconductors AV3Sb5 (A = K, Rb, Cs)9-11 exhibit unconventional chiral charge order12-19, which is analogous to the long-sought-after quantum order in the Haldane model20 or Varma model21. However, direct evidence for the time-reversal symmetry breaking of the charge order remains elusive. Here we use muon spin relaxation to probe the kagome charge order and superconductivity in KV3Sb5. We observe a noticeable enhancement of the internal field width sensed by the muon ensemble, which takes place just below the charge ordering temperature and persists into the superconducting state. Notably, the muon spin relaxation rate below the charge ordering temperature is substantially enhanced by applying an external magnetic field. We further show the multigap nature of superconductivity in KV3Sb5 and that the [Formula: see text] ratio (where Tc is the superconducting transition temperature and λab is the magnetic penetration depth in the kagome plane) is comparable to those of unconventional high-temperature superconductors. Our results point to time-reversal symmetry-breaking charge order intertwining with unconventional superconductivity in the correlated kagome lattice.

5.
Nat Commun ; 11(1): 559, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992705

RESUMO

Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. Here, we explore magnetic correlations in the kagome magnet Co3Sn2S2. Using muon spin-rotation, we present evidence for competing magnetic orders in the kagome lattice of this compound. Our results show that while the sample exhibits an out-of-plane ferromagnetic ground state, an in-plane antiferromagnetic state appears at temperatures above 90 K, eventually attaining a volume fraction of 80% around 170 K, before reaching a non-magnetic state. Strikingly, the reduction of the anomalous Hall conductivity (AHC) above 90 K linearly follows the disappearance of the volume fraction of the ferromagnetic state. We further show that the competition of these magnetic phases is tunable through applying either an external magnetic field or hydrostatic pressure. Our results taken together suggest the thermal and quantum tuning of Berry curvature induced AHC via external tuning of magnetic order.

6.
Sci Adv ; 5(11): eaav8465, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31819897

RESUMO

We report on muon spin rotation experiments probing the magnetic penetration depth λ(T) in the layered superconductors in 2H-NbSe2 and 4H-NbSe2. The current results, along with our earlier findings on 1T'-MoTe2 (Guguchia et al.), demonstrate that the superfluid density scales linearly with T c in the three transition metal dichalcogenide superconductors. Upon increasing pressure, we observe a substantial increase of the superfluid density in 2H-NbSe2, which we find to correlate with T c. The correlation deviates from the abovementioned linear trend. A similar deviation from the Uemura line was also observed in previous pressure studies of optimally doped cuprates. This correlation between the superfluid density and T c is considered a hallmark feature of unconventional superconductivity. Here, we show that this correlation is an intrinsic property of the superconductivity in transition metal dichalcogenides, whereas the ratio T c/T F is approximately a factor of 20 lower than the ratio observed in hole-doped cuprates. We, furthermore, find that the values of the superconducting gaps are insensitive to the suppression of the charge density wave state.

7.
Phys Rev Lett ; 123(14): 147001, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702214

RESUMO

We report muon spin rotation and magnetization measurements under pressure on Fe_{1+δ}Se_{1-x}S_{x} with x≈0.11. Above p≈0.6 GPa we find a microscopic coexistence of superconductivity with an extended dome of long range magnetic order that spans a pressure range between previously reported separated magnetic phases. The magnetism initially competes on an atomic scale with the coexisting superconductivity leading to a local maximum and minimum of the superconducting T_{c}(p). The maximum of T_{c} corresponds to the onset of magnetism while the minimum coincides with the pressure of strongest competition. A shift of the maximum of T_{c}(p) for a series of single crystals with x up to 0.14 roughly extrapolates to a putative magnetic and superconducting state at ambient pressure for x≥0.2.

8.
Sci Adv ; 4(12): eaat3672, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30588488

RESUMO

Transition metal dichalcogenides (TMDs) are interesting for understanding the fundamental physics of two-dimensional (2D) materials as well as for applications to many emerging technologies, including spin electronics. Here, we report the discovery of long-range magnetic order below T M = 40 and 100 K in bulk semiconducting TMDs 2H-MoTe2 and 2H-MoSe2, respectively, by means of muon spin rotation (µSR), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The µSR measurements show the presence of large and homogeneous internal magnetic fields at low temperatures in both compounds indicative of long-range magnetic order. DFT calculations show that this magnetism is promoted by the presence of defects in the crystal. The STM measurements show that the vast majority of defects in these materials are metal vacancies and chalcogen-metal antisites, which are randomly distributed in the lattice at the subpercent level. DFT indicates that the antisite defects are magnetic with a magnetic moment in the range of 0.9 to 2.8 µB. Further, we find that the magnetic order stabilized in 2H-MoTe2 and 2H-MoSe2 is highly sensitive to hydrostatic pressure. These observations establish 2H-MoTe2 and 2H-MoSe2 as a new class of magnetic semiconductors and open a path to studying the interplay of 2D physics and magnetism in these interesting semiconductors.

9.
Phys Rev Lett ; 120(23): 237202, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932706

RESUMO

Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate ß-Li_{2}IrO_{3} is explored using magnetization, thermal expansion, magnetostriction, and muon spin rotation measurements, as well as single-crystal x-ray diffraction under pressure and ab initio calculations. The Néel temperature of ß-Li_{2}IrO_{3} increases with the slope of 0.9 K/GPa upon initial compression, but the reduction in the polarization field H_{c} reflects a growing instability of the incommensurate order. At 1.4 GPa, the ordered state breaks down upon a first-order transition, giving way to a new ground state marked by the coexistence of dynamically correlated and frozen spins. This partial freezing in the absence of any conspicuous structural defects may indicate the classical nature of the resulting pressure-induced spin liquid, an observation paralleled to the increase in the nearest-neighbor off-diagonal exchange Γ under pressure.

10.
Nat Commun ; 9(1): 201, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321471

RESUMO

The original version of this article omitted the following from the Acknowledgements: "CAM and AL were supported by the NSF MRSEC program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). Additionally, this research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under 'Contract No. DE-AC02-05CH11231'." This has now been corrected in both the PDF and HTML versions of the article.

11.
Phys Rev B ; 98(18)2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38915822

RESUMO

We report pressure-dependent neutron diffraction and muon spin relaxation/rotation measurements combined with first-principles calculations to investigate the structural, magnetic, and electronic properties of BaFe2S3 under pressure. The experimental results reveal a gradual enhancement of the stripe-type ordering temperature with increasing pressure up to 2.6 GPa and no observable change in the size of the ordered moment. The ab initio calculations suggest that the magnetism is highly sensitive to the Fe-S bond lengths and angles, clarifying discrepancies with previously published results. In contrast to our experimental observations, the calculations predict a monotonic reduction of the ordered moment with pressure. We suggest that the robustness of the stripe-type antiferromagnetism is due to strong electron correlations not fully considered in the calculations.

12.
13.
Nat Commun ; 8(1): 1082, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057874

RESUMO

In its orthorhombic T d polymorph, MoTe2 is a type-II Weyl semimetal, where the Weyl fermions emerge at the boundary between electron and hole pockets. Non-saturating magnetoresistance and superconductivity were also observed in T d-MoTe2. Understanding the superconductivity in T d-MoTe2, which was proposed to be topologically non-trivial, is of eminent interest. Here, we report high-pressure muon-spin rotation experiments probing the temperature-dependent magnetic penetration depth in T d-MoTe2. A substantial increase of the superfluid density and a linear scaling with the superconducting critical temperature T c is observed under pressure. Moreover, the superconducting order parameter in T d-MoTe2 is determined to have 2-gap s-wave symmetry. We also exclude time-reversal symmetry breaking in the superconducting state with zero-field µSR experiments. Considering the strong suppression of T c in MoTe2 by disorder, we suggest that topologically non-trivial s +- state is more likely to be realized in MoTe2 than the topologically trivial s ++ state.

14.
Phys Rev Lett ; 119(8): 087002, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28952761

RESUMO

We report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x≈1/8, the spin-stripe ordering temperature T_{so} decreases linearly with Zn doping y and disappears at y≈4%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO_{2} plane. Moreover, T_{so} is suppressed by Zn in the same manner as the superconducting transition temperature T_{c} for samples near optimal hole doping. This surprisingly similar sensitivity suggests that the spin-stripe order is dependent on intertwining with superconducting correlations.

15.
Nat Commun ; 8: 14810, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294118

RESUMO

A quantum spin liquid is a state of matter characterized by quantum entanglement and the absence of any broken symmetry. In condensed matter, the frustrated rare-earth pyrochlore magnets Ho2Ti2O7 and Dy2Ti2O7, so-called spin ices, exhibit a classical spin liquid state with fractionalized thermal excitations (magnetic monopoles). Evidence for a quantum spin ice, in which the magnetic monopoles become long range entangled and an emergent quantum electrodynamics arises, seems within reach. The magnetic properties of the quantum spin ice candidate Yb2Ti2O7 have eluded a global understanding and even the presence or absence of static magnetic order at low temperatures is controversial. Here we show that sensitivity to pressure is the missing key to the low temperature behaviour of Yb2Ti2O7. By combining neutron diffraction and muon spin relaxation on a stoichiometric sample under pressure, we evidence a magnetic transition from a disordered, non-magnetic, ground state to a splayed ferromagnetic ground state.

16.
J Phys Condens Matter ; 29(16): 164003, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28323635

RESUMO

Muon-spin rotation data collected at ambient pressure (p) and at p = 2.42 GPa in MnP were analyzed to check their consistency with various low- and high-pressure magnetic structures reported in the literature. Our analysis confirms that in MnP the low-temperature and low-pressure helimagnetic phase is characterised by an increased value of the average magnetic moment compared to the high-temperature ferromagnetic phase. An elliptical double-helical structure with a propagation vector [Formula: see text], an a-axis moment elongated by approximately 18% and an additional tilt of the rotation plane towards c-direction by [Formula: see text]-8° leads to a good agreement between the theory and the experiment. The analysis of the high-pressure µSR data reveals that the new magnetic order appearing for pressures exceeding 1.5 GPa can not be described by keeping the propagation vector [Formula: see text]. Even the extreme case-decoupling the double-helical structure into four individual helices-remains inconsistent with the experiment. It is shown that the high-pressure magnetic phase which is a precursor of superconductivity is an incommensurate helical state with [Formula: see text].

17.
Khirurgiia (Mosk) ; (1): 63-67, 2017.
Artigo em Russo | MEDLINE | ID: mdl-28209957

RESUMO

AIM: To define the the role of small bowel length in development of SBS. MATERIAL AND METHODS: Seventeen patients with SBS after small bowel resection in neonatal period were included into the study. Total small bowel length ranged from 5 to 55 cm (11.8±5.59% from normal length for certain age). RESULTS: Described small bowel length has high risk of SBS/IF development irrespective to other factors (specific segment of small bowel that was resected, preserved intestinal segment state, absence of colon and/or ileocecal valve). CONCLUSION: It is required to perform further studies with greater amount of patients to discover exact small bowel length which is associated with SBS and other factors affecting small bowel state.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Dissecação/efeitos adversos , Gastroenteropatias/cirurgia , Intestino Delgado , Síndrome do Intestino Curto , Procedimentos Cirúrgicos do Sistema Digestório/métodos , Feminino , Gastroenteropatias/classificação , Idade Gestacional , Humanos , Recém-Nascido , Intestino Delgado/patologia , Intestino Delgado/fisiopatologia , Intestino Delgado/cirurgia , Masculino , Tamanho do Órgão , Avaliação de Processos e Resultados em Cuidados de Saúde , Prognóstico , Medição de Risco , Fatores de Risco , Federação Russa , Síndrome do Intestino Curto/diagnóstico , Síndrome do Intestino Curto/etiologia , Síndrome do Intestino Curto/fisiopatologia
18.
Sud Med Ekspert ; 59(6): 58-61, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27981966

RESUMO

We undertook the analysis of the legislative acts currently in force in the Republic of Kazakhstan pertinent to the training of the expert and pedagogical personnel for the forensic medical services with special reference to their advantages and disadvantages from the standpoint of legal regulation of the activities in this sphere. The problems of staffing support of expert practice are illustrated on the example of activities of the Almaty branch of the Centre of Forensic Medicine of the Kazakh Ministry of Justice. The approaches to the solution of these problems are proposed.

19.
Nat Commun ; 6: 8863, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26548650

RESUMO

The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.

20.
Phys Rev Lett ; 114(24): 247004, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26196999

RESUMO

The superconducting properties of LaFeAsO(1-x)F(x) under conditions of optimal electron doping are investigated upon the application of external pressure up to ∼23 kbar. Measurements of muon-spin spectroscopy and dc magnetometry evidence a clear mutual independence between the critical temperature T(c) and the low-temperature saturation value for the ratio n(s)/m(*) (superfluid density over effective band mass of Cooper pairs). Remarkably, a dramatic increase of ∼30% is reported for n(s)/m(*) at the maximum pressure value while T(c) is substantially unaffected in the whole accessed experimental window. We argue and demonstrate that the explanation for the observed results must take the effect of nonmagnetic impurities on multiband superconductivity into account. In particular, the unique possibility to modify the ratio between intraband and interband scattering rates by acting on structural parameters while keeping the amount of chemical disorder constant is a striking result of our proposed model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA