Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1232924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662909

RESUMO

Antibody-dependent enhancement (ADE) of bacterial infections occurs when blocking or inhibitory antibodies facilitate the infectivity of pathogens. In humans, antibodies involved in ADE of bacterial infections may include those naturally produced against Galα1-3Galß1-4GlcNAcß (αGal). Here, we investigate whether eliminating circulating anti-αGal antibodies using a soluble αGal glycopolymer confers protection against Gram-negative bacterial infections. We demonstrated that the in vivo intra-corporeal removal of anti-αGal antibodies in α1,3-galactosyltransferase knockout (GalT-KO) mice was associated with protection against mortality from Gram-negative sepsis after cecal ligation and puncture (CLP). The improved survival of GalT-KO mice was associated with an increased killing capacity of serum against Escherichia coli isolated after CLP and reduced binding of IgG1 and IgG3 to the bacteria. Additionally, inhibition of anti-αGal antibodies from human serum in vitro increases the bactericidal killing of E. coli O86:B7 and multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. In the case of E. coli O86:B7, there was also an improvement in bacteria opsonophagocytosis by macrophages. Both lytic mechanisms were related to a decreased binding of IgG2 to the bacteria. Our results show that protective immunity against Gram-negative bacterial pathogens can be elicited, and infectious diseases caused by these bacteria can be prevented by removing natural anti-αGal antibodies.


Assuntos
Escherichia coli , Infecções por Bactérias Gram-Negativas , Humanos , Animais , Camundongos , Punções , Imunoglobulina G , Antibacterianos
2.
Biochim Biophys Acta Biomembr ; 1863(9): 183645, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34019901

RESUMO

Modification of the cell surface with synthetic glycolipids opens up a wide range of possibilities for studying the function of glycolipids. Synthetic glycolipids called Function-Spacer-Lipids (FSL; where F is a glycan or label, S is a spacer, and L is dioleoylphosphatidyl ethanolamine) easily and controllably modify the membrane of a living cells. This current study investigates the dynamics and mechanism of the FSL insertion and release/loss. FSL insert into the cell membrane (~1 million molecules per cell) within tens of minutes, almost regardless of the nature of the cells (including the thickness of their glycocalyx) and the size of the FSL glycan. FSLs do not accumulate uniformly, but instead form patches >300 nm in size either entrapped in the glycocalyx, or integrated in the plane of the plasma membrane, but always outside the cell rafts. The natural release (loss) of FSL from the modified cell was two orders of magnitude slower than attachment/insertion and occurred mainly in the form of released microvesicles with a size of 140 ± 5 nm. The accumulation of FSL as patches in the cell membrane is similar to the coalescence of natural glycosphingolipids and supports (along with their long residence time in the membrane) the use of FSL as probes for the study of glycosphingolipid-protein interactions.


Assuntos
Membrana Celular/química , Glicolipídeos/química , Células Cultivadas , Glicolipídeos/síntese química , Humanos , Estrutura Molecular
3.
Xenotransplantation ; 28(3): e12672, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33432698

RESUMO

BACKGROUND: The α1,3-galactosyltransferase gene-knockout (GalT KO) mice are able to produce natural anti-αGal antibodies apparently without any specific immunization. GalT KO mice are commonly used as a model immunological system for studying anti-αGal responses to Gal-positive xenografts in human. In this study, we compared the specificity of mouse and human αGal antibodies to realize the adequacy of the murine model. METHODS: Using hapten-specific affinity chromatography antibodies against Galα1-3Galß1-4GlcNAcß epitope were isolated from both human and GalT KO mice blood sera. Specificity of isolated antibodies was determined using a printed glycan array (PGA) containing 400 mammalian glycans and 200 bacterial polysaccharides. RESULTS: The quantity of isolated specific anti-Galα antibodies corresponds to a content of <0.2% of total Ig, which is an order of magnitude lower than that generally assumed for both human and murine peripheral blood immunoglobulin, with a high predominance of IgM over IgG (95% vs 5%). Analysis using a printed glycan array has demonstrated that (a) antibodies from both species bind not only the Galα1-3Galß1-4GlcNAcß epitope, but also unrelated glycans; (b) particularly, for human (but not mouse) antibodies the best binders appear to be bacterial polysaccharides; (c) the profile of mouse antibodies is broader, it is noteworthy that they recognize a variety of human blood group B epitopes and even glycans without the α-galactosyl residue. CONCLUSIONS: We believe that the mouse model should be used cautiously in xenotransplantation experiments when the fine epitope specificity of antibodies is critical.


Assuntos
Anticorpos , Galactosiltransferases , Animais , Galactosiltransferases/genética , Humanos , Camundongos , Camundongos Knockout , Polissacarídeos , Transplante Heterólogo
4.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899593

RESUMO

The level of human natural antibodies of immunoglobulin M isotype against LeC in patients with breast cancer is lower than in healthy women. The epitope specificity of these antibodies has been characterized using a printed glycan array and enzyme-linked immunosorbent assay (ELISA), the antibodies being isolated from donors' blood using LeC-Sepharose (LeC is Galß1-3GlcNAcß). The isolated antibodies recognize the disaccharide but do not bind to glycans terminated with LeC, which implies the impossibility of binding to regular glycoproteins of non-malignant cells. The avidity (as dissociation constant value) of antibodies probed with a multivalent disaccharide is 10-9 M; the nanomolar level indicates that the concentration is sufficient for physiological binding to the cognate antigen. Testing of several breast cancer cell lines showed the strongest binding to ZR 75-1. Interestingly, only 7% of the cells were positive in a monolayer with a low density, increasing up to 96% at highest density. The enhanced interaction (instead of the expected inhibition) of antibodies with ZR 75-1 cells in the presence of Galß1-3GlcNAcß disaccharide, indicates that the target epitope of anti-LeC antibodies is a molecular pattern with a carbohydrate constituent rather than a glycan.


Assuntos
Dissacarídeos/imunologia , Epitopos/imunologia , Galactanos/imunologia , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Dissacarídeos/química , Dissacarídeos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Galactanos/metabolismo , Humanos , Imunoglobulina M/imunologia , Camundongos , Camundongos Knockout , Polissacarídeos/química , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Ligação Proteica
5.
Mol Immunol ; 120: 74-82, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32087569

RESUMO

To understand the role of human natural IgM known as antibodies against the carbohydrate epitope Tn, the antibodies were isolated using GalNAcα-Sepharose affinity chromatography, and their specificity was profiled using microarrays (a glycan array printed with oligosaccharides and bacterial polysaccharides, as well as a glycopeptide array), flow cytometry, and inhibition ELISA. The antibodies bound a restricted number of GalNAcα-terminated oligosaccharides better than the parent monosaccharide, e.g., 6-O-Su-GalNAcα and GalNAcα1-3Galß1-3(4)GlcNAcß. The binding with several bacterial polysaccharides that have no structural resemblance to the affinity ligand GalNAcα was quite unexpected. Given that GalNAcα is considered the key fragment of the Tn antigen, it is surprising that these antibodies bind weakly GalNAcα-OSer and do not bind a wide variety of GalNAcα-OSer/Thr-containing mucin glycopeptides. At the same time, we have observed specific binding to cells having Tn-positive glycoproteins containing similar glycopeptide motifs in a conformationally rigid macromolecule. Thus, specific recognition of the Tn antigen apparently requires that the naturally occurring "anti-Tn" IgM recognize a complex epitope comprising the GalNAcα as an essential component and a fairly long amino acid sequence where the amino acids adjacent to GalNAcα do not contact the antibody paratope; i.e., the antibodies recognize a spatial epitope or a molecular pattern rather than a classical continuous sequence. In addition, we have not found any increase in the binding of natural antibodies when GalNAcα residues were clustered. These results may help in further development of anticancer vaccines based on synthetic Tn constructs.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Sequência de Aminoácidos , Afinidade de Anticorpos , Especificidade de Anticorpos , Reações Antígeno-Anticorpo/imunologia , Antígenos Glicosídicos Associados a Tumores/química , Sequência de Carboidratos , Epitopos/química , Epitopos/imunologia , Epitopos/isolamento & purificação , Humanos , Imunidade Inata , Imunoglobulina M/imunologia , Imunoglobulina M/isolamento & purificação , Células Jurkat , Neoplasias/imunologia
6.
Front Immunol ; 10: 342, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891034

RESUMO

Gut commensal bacteria are known to have a significant role in regulating the innate and adaptive immune homeostasis. Alterations in the intestinal microbial composition have been associated with several disease states, including autoimmune and inflammatory conditions. However, it is not entirely clear how commensal gut microbiota modulate and contribute to the systemic immunity, and whether circulating elements of the host immune system could regulate the microbiome. Thus, we have studied the diversity and abundance of specific taxons in the gut microbiota of inbred GalT-KO mice during 7 months of animal life by metagenetic high-throughput sequencing (16S rRNA gene, variable regions V3-V5). The repertoire of glycan-specific natural antibodies, obtained by printed glycan array technology, was then associated with the microbial diversity for each animal by metagenome-wide association studies (MWAS). Our data show that the orders clostridiales (most abundant), bacteriodales, lactobacillales, and deferribacterales may be associated with the development of the final repertoire of natural anti-glycan antibodies in GalT-KO mice. The main changes in microbiota diversity (month-2 and month-3) were related to important changes in levels and repertoire of natural anti-glycan antibodies in these mice. Additionally, significant positive and negative associations were found between the gut microbiota and the pattern of specific anti-glycan antibodies. Regarding individual features, the gut microbiota and the corresponding repertoire of natural anti-glycan antibodies showed differences among the examined animals. We also found redundancy in different taxa associated with the development of specific anti-glycan antibodies. Differences in microbial diversity did not, therefore, necessarily influence the overall functional output of the gut microbiome of GalT-KO mice. In summary, the repertoire of natural anti-carbohydrate antibodies may be partially determined by the continuous antigenic stimulation produced by the gut bacterial population of each GalT-KO mouse. Small differences in gut microbiota diversity could determine different repertoire and levels of natural anti-glycan antibodies and consequently might induce different immune responses to pathogens or other potential threats.


Assuntos
Anticorpos/imunologia , Microbioma Gastrointestinal/imunologia , Microbiota/imunologia , Polissacarídeos/imunologia , Animais , Antígenos/imunologia , Bactérias/imunologia , Feminino , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Metagenoma/imunologia , Camundongos , Camundongos Knockout , RNA Ribossômico 16S/imunologia
7.
J Vis Exp ; (144)2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30829318

RESUMO

The repertoire of circulating anti-carbohydrate antibodies of a given individual is often associated with its immunological status. Not only the individual immune condition determines the success in combating internal and external potential threat signals, but also the existence of a particular pattern of circulating anti-glycan antibodies (and their serological level variation) could be a significant marker of the onset and progression of certain pathological conditions. Here, we describe a Printed Glycan Array (PGA)-based methodology that offers the opportunity to measure hundreds of glycan targets with very high sensitivity; using a minimal amount of sample, which is a common restriction present when small animals (rats, mice, hamster, etc.) are used as models to address aspects of human diseases. As a representative example of this approach, we show the results obtained from the analysis of the repertoire of natural anti-glycan antibodies in BALB/c mice. We demonstrate that each BALB/c mouse involved in the study, despite being genetically identical and maintained under the same conditions, develops a particular pattern of natural anti-carbohydrate antibodies. This work claims to expand the use of PGA technology to investigate repertoire (specificities) and the levels of circulating anti-carbohydrates antibodies, both in health and during any pathological condition.


Assuntos
Anticorpos/sangue , Carboidratos/imunologia , Análise em Microsséries/métodos , Animais , Biomarcadores/sangue , Humanos , Camundongos Endogâmicos BALB C , Polissacarídeos/imunologia
8.
Front Immunol ; 8: 1449, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163519

RESUMO

One of the most common genetic backgrounds for mice used as a model to investigate human diseases is the inbred BALB/c strain. This work is aimed to characterize the pattern of natural anti-carbohydrate antibodies present in the serum of 20 BALB/c mice by printed glycan array technology and to compare their binding specificities with that of human natural anti-carbohydrate antibodies. Natural antibodies (NAbs) from the serum of BALB/c mice interacted with 71 glycans from a library of 419 different carbohydrate structures. However, only seven of these glycans were recognized by the serum of all the animals studied, and other five glycans by at least 80% of mice. The pattern of the 12 glycans mostly recognized by the circulating antibodies of BALB/c mice differed significantly from that observed with natural anti-carbohydrate antibodies in humans. This lack of identical repertoires of natural anti-carbohydrate antibodies between individual inbred mice, and between mice and humans, should be taken into consideration when mouse models are intended to be used for investigation of NAbs in biomedical research.

9.
Tumour Biol ; 39(10): 1010428317725434, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29072130

RESUMO

A repertoire of monoclonal antibodies was generated by immunization of mice with cancer-associated glycoprotein CA19.9, and two of them were selected as optimal capture and detecting counterparts for sandwich test system for detection of CA19.9. Fine epitope specificity of the antibodies was determined using printed glycan array, enzyme-linked immunosorbent assay, and inhibitory enzyme-linked immunosorbent assay. Unexpectedly, both immunoglobulins did not bind key epitope of CA19.9 glycoprotein, tetrasaccharide SiaLeA, as well as its defucosylated form sialyl LeC (known as CA-50 epitope). The antibodies were found to have different glycan-binding profiles; however, they recognized similar glycotopes with common motif Galß1-3GlcNAcß (LeC), thus resembling specificity of human natural cancer-associated anti-LeC antibodies. We propose that cancer-specific glycopeptide epitope includes Galß1-3GlcNAcß fragment of a glycoprotein O-chain in combination with proximal hydrophobic amino acid(s) of the polypeptide chain.


Assuntos
Anticorpos Monoclonais/imunologia , Antígeno CA-19-9/imunologia , Epitopos/imunologia , Neoplasias/imunologia , Trissacarídeos/imunologia , Animais , Anticorpos Monoclonais/genética , Antígeno CA-19-9/genética , Epitopos/genética , Glicopeptídeos/genética , Glicopeptídeos/imunologia , Humanos , Camundongos , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/imunologia , Neoplasias/genética , Trissacarídeos/genética
11.
Top Curr Chem ; 366: 169-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24037491

RESUMO

Natural antibodies, part of the innate immunity system, are produced at strictly regulated levels in normal sera without immunization and thus are part of the innate immune system. The best studied natural antibodies are those directed against blood group antigens A and B and xeno-antigens including glycolylneuraminic acid containing Hanganutziu-Deicher (HD) glycolipid. Abnormal levels of anti-glycan antibodies were found in a number of pathologies. In many cases pathological antibodies are known to bind gangliosides. The genesis of anti-glycan antibodies in healthy humans and the reasons for their changes in pathologies are poorly understood. With a growing interest in their diagnostic applications, it is important to determine the carbohydrate structures that are recognized by antibodies present in the circulation of healthy individuals. We tested a large number of healthy donors using a printed glycan array (PGA) in a microchip format. The PGA contained ~300 glycans, representing mostly normal mammalian structures of glycoproteins and glycolipids, and many of the structures presented are biologically relevant sialylated motifs. As revealed by PGA, the sera interacted with at least 70 normal human glycans. With only few exceptions, antibodies recognizing sialosides have not been identified. Moderate levels of antibodies and moderate variability were observed in the case of SiaT n and its glycolyl variant. Unexpectedly, we found minimal antibody titer directed against Neu5Gcα and the trisaccharide Neu5Gcα2-6Galß1-4GlcNAc, although this form of neuraminic acid does not occur naturally in humans. Antibodies recognizing sialosides in unnatural ß-configuration have been detected and confirmed Springer's paradigm that circulating antibodies represent a reaction against bacteria. Gram-negative bacteria contain LPS with ßKDN and/or ßKDO which are very close analogs of Neu5Ac that are found in ß-connected form. Antibodies against the biantennary N-glycan chain, (Neu5Acα2-6Galß1-4GlcNAcß1-2Manα)2-3,6-Manß1-4GlcNAcß1-4GlcNAc were never observed and similarly we never saw antibodies directed against the SiaLe(a)/SiaLe (x) motifs. Anti-sialoglycan antibodies can be masked with gangliosides: for example, we observe about a five times higher level of anti-GD3 in purified total IgG compared to the same concentration of total Ig in the composition of native serum. For several antibodies we observed anomalous binding in diluted sera, namely, the signals towards sialylated glycans were increased in the PGA if diluted sera were used.


Assuntos
Anticorpos Heterófilos/sangue , Gangliosídeos/sangue , Glicoproteínas/sangue , Imunidade Inata , Imunoglobulina G/sangue , Oligossacarídeos/sangue , Anticorpos Heterófilos/química , Anticorpos Heterófilos/imunologia , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Sequência de Carboidratos , Gangliosídeos/química , Gangliosídeos/imunologia , Glicoproteínas/química , Glicoproteínas/imunologia , Humanos , Imunidade Humoral , Imunoglobulina G/química , Análise em Microsséries , Dados de Sequência Molecular , Oligossacarídeos/química , Oligossacarídeos/imunologia , Ligação Proteica
12.
Glycoconj J ; 29(2-3): 87-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22258790

RESUMO

Using printed glycan array (PGA) we compared the results of antibody profiling in undiluted, moderately (1:15) and highly (1:100) diluted human blood serum. Undiluted serum is suitable for studying blood as a tissue in its native state, whereas to study the serum of newborns or small animals one usually has to dilute the starting material in order to have sufficient volume for PGA experimentation. The PGA used in this study allows for the use of whole serum without modifications to the protocol, and the background is surprisingly low. Antibodies profiles observed in undiluted serum versus 1:15 dilution were similar, with only a limited number of new signals identified in the undiluted serum. However, unexpected irregularities were found when IgG and IgM are measured separately, namely, at a 1:15 dilution more intensive IgG signals for many glycans are observed. We believe that in conditions of moderate dilution IgG and IgM antibodies can compete with each other for antigen and as a result, the higher affinity anti-glycan IgGs give rise to more intense signals. Therefore depending on the purpose, different dilutions of serum will be optimal: in competitive 1:15 conditions the observed IgG/IgM ratio corresponds to their titer, whereas at 1:100 dilution the measured ratio corresponds to real molar concentration of IgG and IgM.


Assuntos
Imunoglobulina G/sangue , Imunoglobulina M/sangue , Polissacarídeos/imunologia , Análise Serial de Proteínas/métodos , Soro/imunologia , Animais , Sequência de Carboidratos , Cabras , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...