Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Heliyon ; 10(7): e28676, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617951

RESUMO

Non-viral gene delivery is a new therapeutic in the treating genetic disorders. The most important challenge in nonviral gene transformation is the immunogenicity of carriers. Nowadays, The immunogenicity of nanocarriers as a deliverer of nucleic acid molecules has received significant attention. In this research, hematite green nanocarriers were prepared in one step with rosemary extract. Synthetic nanocarriers were investigated by using XRD (X-ray diffraction analysis), FESEM-EDX (field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy), HR-TEM (high-resolution transmission electron microscopy), VSM (value stream mapping), TGA- DTG (thermal gravimetric analysis-differential thermal analysis), FT-IR (fourier-transform infrared spectroscopy), BET (brunauer-emmett-teller) and BJH (barrett-joyner-halenda) analyses. The cytotoxicity of synthetic nanocarriers was evaluated on HEK-293Tcell lines at concentration of 1-500 µg/ml using MTT method. Finally, targeted transfection of GFP plasmid using green porous particles was performed using an external magnetic field. Biogenic hematite nanoparticles with hexagonal crystal structures have a 3D pile flower-like morphology. The existence of rosemary phytochemicals in the construction of nanoparticles has caused minimal toxicity and high biocompatibility of nanocarriers. Also, TGA studies confirmed the stability of bionic nanoparticles. Superparamagnetic green nanocarriers at concentrations above 500 µg/ml is not toxic to HEK293T cells. The delivery efficiency of the plasmid was optimal at an N/P ratio of 3. Therefore, the porous α-Fe2O3 green nanocarriers are non-viral and safe carriers with potential applications in gene therapy.

2.
Biomed Mater ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636500

RESUMO

Bone tissue engineering provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for bone tissue engineering applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel bone tissue engineering materials and methods for segmental defects.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38685807

RESUMO

INTRODUCTION: Green synthesis offers a fast, simple, and economical method for producing metallic nanoparticles.The basis of this method is to obtain nanoparticles using natural materials, such as plants, fungi, and bacteria, instead of harmful and expensive chemical-reducing agents. In this study, CeO2NPs were produced using Alhagi maurorum extract, and their anticancer and antibacterial activities were evaluated. METHOD: Alhagi maurorum extract was prepared according to a previously described protocol, and CeO2NPs were synthesized from the salt of this extract. The resulting nanoparticles were characterized using Transmission electron microscopy (TEM), scanning electron microscope (SEM), and X-ray diffraction (XRD) techniques. The antibacterial and cytotoxic effects of the nanoparticles were measured by MIC, MBC, and MTT assays, respectively. The results were analyzed using one-way analysis of variance (ANOVA) using Prism software. RESULTS: The MTT assay on breast cancer cell lines showed that the cytotoxic effect of CeO2NPs on cell lines was concentration-dependent. In addition, this nanoparticle was more effective against Gram-positive bacteria. CONCLUSION: These nanoparticles can be used as cancer drug delivery systems with specific targeting at low concentrations in addition to anticancer treatments. It can also have biological and medicinal applications, such as natural food preservation and wound dressing.

5.
J Biol Eng ; 17(1): 61, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784189

RESUMO

Multicomponent nanoparticle systems are known for their varied properties and functions, and have shown potential as gene nanocarriers. This study aims to synthesize and characterize ternary nickel-cobalt-ferrite (NiCoFe2O4) nanoparticles with the potential to serve as gene nanocarriers for cancer/gene therapy. The biogenic nanocarriers were prepared using a simple and eco-friendly method following green chemistry principles. The physicochemical properties of the nanoparticles were analyzed by X-ray diffraction, vibrating sample magnetometer, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. To evaluate the morphology of the nanoparticles, the field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy, high-resolution transmission electron microscopy imaging, and electron tomography were conducted. Results indicate the nanoparticles have a nanoflower morphology with a mesoporous nature and a cubic spinel structure, where the rod and spherical nanoparticles became rose-like with a specific orientation. These nanoparticles were found to have minimal toxicity in human embryonic kidney 293 (HEK-293 T) cells at concentrations of 1 to 250 µg·mL-1. We also demonstrated that the nanoparticles could be used as gene nanocarriers for delivering genes to HEK-293 T cells using an external magnetic field, with optimal transfection efficiency achieved at an N/P ratio of 2.5. The study suggests that biogenic multicomponent nanocarriers show potential for safe and efficient gene delivery in cancer/gene therapy.

7.
Microsc Res Tech ; 86(6): 669-685, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36883432

RESUMO

Here, we reported the biosynthesis of silver nanoparticles (AgNPs) using Urtica dioica (nettle) leaf extract as green reducing and capping agents and investigate their anticancer and antibacterial, activity. The Nettle-mediated biosynthesized AgNPs was characterized by UV-Vis a spectrophotometer. Their size, shape and elemental analysis were determined with the using of SEM and TEM. The crystal structure was determined by XRD and the biomolecules responsible for the reduction of Ag+ were determined using FTIR analysis. Nettle-mediated biosynthesis AgNPs indicated strong antibacterial activity against pathogenic microorganisms. Again, the antioxidant activity of AgNPs is quite high when compared to ascorbic acid. Anticancer effect of AgNPs, IC50 dose was determined by XTT analysis using MCF-7 cell line and the IC50 value was found to be 0.243 ± 0.014 µg/mL (% w/v).


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Urtica dioica , Antioxidantes/farmacologia , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
8.
IET Nanobiotechnol ; 17(1): 22-31, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36420828

RESUMO

Hyperthermia is an additional treatment method to radiation therapy/chemotherapy, which increases the survival rate of patients without side effects. Nowadays, Auroshell nanoparticles have attracted much attention due to their precise control over heat use for medical purposes. In this research, iron/gold Auroshell nanoparticles were synthesised using green nanotechnology approach. Auroshell gold@hematite nanoparticles were synthesised and characterised with rosemary extract in one step and the green synthesised nanoparticles were characterised by X-ray powder diffraction, SEM, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. Cytotoxicity of Auroshell iron@gold nanoparticles against normal HUVEC cells and glioblastoma cancer cells was evaluated by 2,5-diphenyl-2H-tetrazolium bromide method, water bath hyperthermia, and combined method of water bath hyperthermia and nano-therapy. Auroshell gold@hematite nanoparticles with minimal toxicity are safe against normal cells. The gold shell around the magnetic core of magnetite caused the environmental and cellular biocompatibility of these Auroshell nanoparticles. These magnetic nanoparticles with targeted control and transfer to the tumour tissue led to uniform heating of malignant tumours as the most efficient therapeutic agent.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Oligoelementos , Humanos , Ouro/química , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Hipertermia Induzida/métodos , Ferro , Água
9.
Water Sci Technol ; 86(9): 2303-2335, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36378182

RESUMO

Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields such as medicine and engineering. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of ZnMOFs and the latest research progress of Zn MOF-based photocatalysts to degrade organic pollutants in water, such as organic dyes. This nanomaterial is being used to treat wastewater and has proven to be very efficient because of its exceptionally large surface area and porous nature. The results show that Zn-MOFs are capable of high degradation of the above pollutants and over 90% of degradation was observed in publications. In addition, the reusability percentage was examined and studies showed that the Zn-MOF nanostructure has very good stability and can continue to degrade a high percentage of pollutants after several cycles. This review focuses on Zn-MOFs and their composites. First, the methods of synthesis and characterization of these compounds are given. Finally, the application of these composites in the process of photocatalytic degradation of dye pollutants such as methylene blue, methyl orange, crystal violet, rhodamine B, etc. is explained.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Água , Estruturas Metalorgânicas/química , Corantes/química , Poluentes Ambientais/química , Zinco
10.
Bioprocess Biosyst Eng ; 45(11): 1781-1797, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36125526

RESUMO

Herein, we designed a DNA framework-based intelligent nanorobot using toehold-mediated strand displacement reaction-based molecular programming and logic gate operation for the selective and synchronous detection of miR21 and miR125b, which are known as significant cancer biomarkers. Moreover, to investigate the applicability of our design, DNA nanorobots were implemented as capping agents onto the pores of MSNs. These agents can develop a logic-responsive hybrid nanostructure capable of specific drug release in the presence of both targets. The prosperous synthesis steps were verified by FTIR, XRD, BET, UV-visible, FESEM-EDX mapping, and HRTEM analyses. Finally, the proper release of the drug in the presence of both target microRNAs was studied. This Hybrid DNA Nanostructure was designed with the possibility to respond to any target oligonucleotides with 22 nucleotides length.


Assuntos
MicroRNAs , Nanoestruturas , Neoplasias , Humanos , MicroRNAs/análise , MicroRNAs/genética , Biomarcadores Tumorais/genética , Neoplasias/genética , DNA/química , Nanoestruturas/química
11.
IET Nanobiotechnol ; 16(7-8): 284-294, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36039655

RESUMO

Developing biosynthesis of silver nanoparticles (Ag-NPs) using plant extract is an environmentally friendly method to reduce the use of harmful chemical substances. The green synthesis of Ag-NPs by Lawsonia inermis extract and its cellular toxicity and the antimicrobial effect was studied. The physical and chemical properties of synthesised Ag-NPs were investigated using UV-visible spectroscopy, infrared spectroscopy, X-ray diffraction (XRD), scanning, and transmission electron microscopy. The average size of Ag-NPs was 40 nm. The XRD result shows peaks at 2θ = 38.07°, 44.26°, 64.43°, and 77.35° are related to the FCC structure of Ag-NPs. Cytotoxicity of synthesised nanoparticles was evaluated by MTT toxicity test on breast cancer MCF7 cell line. Observations showed that the effect of cytotoxicity of nanoparticles on the studied cell line depended on concentration and time. The obtained IC50 was considered for cells at a dose of 250 µg/ml. Growth and survival rates decreased exponentially with the dose. Antimicrobial properties of Ag-NPs synthesised with extract were investigated against Escherichia coli, Salmonella typhimurium, Bacillus cereus, and Staphylococcus aureus to calculate the minimum inhibitory concentration and the minimum bactericidal concentration of (MBC). The results showed that the synthesised Ag-NPs and the plant extract have antimicrobial properties. The lowest concentration of Ag-NPs that can inhibit the growth of bacterial strains was 25 µg/ml.


Assuntos
Anti-Infecciosos , Lawsonia (Planta) , Nanopartículas Metálicas , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
12.
Microsc Res Tech ; 85(11): 3553-3564, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35983930

RESUMO

In this research, silver-doped zinc oxide (SdZnO) nanoparticles (NPs) were synthesized in an environmental-friendly manner. The synthesized NPs were identified by UV-vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Finally, the antimicrobial activity of synthesized ZnO and SdZnO NPs was performed. It was observed that by doping silver, the size of ZnO NPs was changed. By adding silver to ZnO NPs, the antimicrobial effect of ZnO NPs was improved. Antibacterial test against gram-positive bacterium Streptococcus mutants showed that SdZnO NPs with a low density of silver had higher antibacterial activity than ZnO NPs; Therefore, SdZnO NPs can be used as a new antibacterial agent in medical applications. RESEARCH HIGHLIGHTS: Silver-doped zinc oxide nanoparticles were prepared using an eco-friendly synthesis method and their antimicrobial activity against bacteria causing tooth decay was studied.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Óxido de Zinco/química , Óxido de Zinco/farmacologia
13.
Mater Adv ; 3(12): 4765-4782, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35812837

RESUMO

Carbon nanotubes (CNTs) with attractive physicochemical characteristics such as high surface area, mechanical strength, functionality, and electrical/thermal conductivity have been widely studied in different fields of science. However, the preparation of these nanostructures on a large scale is either expensive or sometimes ecologically unfriendly. In this context, plenty of studies have been conducted to discover innovative methods to fabricate CNTs in an eco-friendly and inexpensive manner. CNTs have been synthesized using various natural hydrocarbon precursors, including plant extracts (e.g., tea-tree extract), essential oils (e.g., eucalyptus and sunflower oil), biodiesel, milk, honey, and eggs, among others. Additionally, agricultural bio-wastes have been widely studied for synthesizing CNTs. Researchers should embrace the usage of natural and renewable precursors as well as greener methods to produce various types of CNTs in large quantities with the advantages of cost-effectiveness and environmentally benign features. In addition, multifunctionalized CNTs with improved biocompatibility and targeting features are promising candidates for cancer theranostic applications owing to their attractive optical, chemical, thermal, and electrical properties. This perspective discusses the recent developments in eco-friendly synthesis of CNTs using green chemistry-based techniques, natural renewable resources, and sustainable catalysts, with emphasis on important challenges and future perspectives and highlighting techniques for the functionalization or modification of CNTs. Significant and promising cancer theranostic applications as well as their biocompatibility and cytotoxicity issues are also discussed.

14.
Sci Rep ; 12(1): 9442, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676521

RESUMO

Zn-doped CuFe2O4 nanoparticles (NPs) were eco-friendly synthesized using plant extract. These nanoparticles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy and thermal gravimetric analysis (TGA). SEM image showed spherical NPs with size range less than 30 nm. In the EDS diagram, the elements of zinc, copper, iron, and oxygen are shown. The cytotoxicity and anticancer properties of Zn-doped CuFe2O4 NPs were evaluated on macrophage normal cells and A549 lung cancer cells. The cytotoxic effects of Zn-doped CuFe2O4 and CuFe2O4 NPs on A549 cancer cell lines were analyzed. The Zn-doped CuFe2O4 and CuFe2O4 NPs demonstrated IC50 values 95.8 and 278.4 µg/mL on A549 cancer cell, respectively. Additionally, Zn-doped CuFe2O4 and CuFe2O4 NPs had IC80 values of 8.31 and 16.1 µg/mL on A549 cancer cell, respectively. Notably, doping Zn on CuFe2O4 NPs displayed better cytotoxic effects on A549 cancer cells compared with the CuFe2O4 NPs alone. Also spinel nanocrystals of Zn-doped CuFe2O4 (~ 13 nm) had a minimum toxicity (CC50 = 136.6 µg/mL) on macrophages J774 Cell Line.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanopartículas , Antineoplásicos/química , Antineoplásicos/farmacologia , Cobre/química , Nanopartículas Metálicas/química , Nanopartículas/química , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Zinco/química
15.
Bioprocess Biosyst Eng ; 45(7): 1201-1210, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35704072

RESUMO

Dental decay is known in the world as the most common human infectious disease. Ascending process of dental caries index in the world shows the failure of oral disease prevention. Streptococcus mutans bacteria cause acid damage and tooth decay by producing acid over time. Nanomaterials with suitable functionality, high permeability, extremely large surface area, significant reactivity, unique mechanical features, and non-bacterial resistance can be considered as promising agents for antimicrobial and antiviral applications. In this study, nickel oxide (NiO) nanoparticles with size range from 2 to 16 nm containing Stevia natural sweetener were eco-friendly synthesized via a simple method. Additionally, their various concentrations were evaluated on S. mutans bacteria by applying the broth dilution method. The results demonstrated that these spherical NiO nanoparticles had efficient bacteriostatic activity on this gram-positive coccus.


Assuntos
Cárie Dentária , Nanopartículas , Antibacterianos/farmacologia , Biofilmes , Humanos , Testes de Sensibilidade Microbiana , Níquel , Extratos Vegetais/farmacologia , Streptococcus mutans
16.
J Chem Technol Biotechnol ; 97(7): 1640-1654, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35463806

RESUMO

The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity, stability and less cytotoxicity can be employed for highly sensitive co-delivery and imaging/diagnosis. Besides, due to the importance of safety and toxicity issues, QDs prepared from plant sources (e.g. curcumin) are much more attractive, as they provide good biocompatibility and low toxicity. In this review, the recent developments pertaining to the diagnostic and inhibitory potentials of QDs against SARS-CoV-2 are deliberated including important challenges and future outlooks. © 2022 Society of Chemical Industry (SCI).

17.
IET Nanobiotechnol ; 16(3): 85-91, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293680

RESUMO

Mesoporous magnetic nanoparticles of haematite were synthesised using plant extracts according to bioethics principles. The structural, physical and chemical properties of mesoporous Fe2 O3 nanoparticles synthesised with the green chemistry approach were evaluated by XRD, SEM, EDAX, BET, VSM and HRTEM analysis. Then, their toxicity against normal HUVECs and MCF7 cancer cells was evaluated by MTT assay for 48 h. These biogenic mesoporous magnetic nanoparticles have over 71% of doxorubicin loading efficiency, resulting in a 50% reduction of cancer cells at a 0.5 µg.ml-1 concentration. Therefore, it is suggested that mesoporous magnetic nanoparticles be used as a multifunctional agent in medicine (therapeutic-diagnostic). The produced mesoporous magnetic nanoparticles with its inherent structural properties such as polygonal structure (increasing surface area to particle volume) and porosity with large pore volume became a suitable substrate for loading the anti-cancer drug doxorubicin.


Assuntos
Nanopartículas , Dióxido de Silício , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Nanopartículas/química , Porosidade , Dióxido de Silício/química
18.
Bioprocess Biosyst Eng ; 45(1): 97-105, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34581868

RESUMO

In this study, potassium-doped zinc oxide nanoparticles (K-doped ZnO NPs) were green-synthesized using pine pollen extracts based on bioethics principles. The synthesized NPs were analyzed using X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDXA), and transmission electron microscopy (TEM). The cytotoxicity of these nanoparticles (NPs) on normal macrophage cells and cancer cell lines was evaluated. In the same concentrations of K-doped ZnO and pure ZnO NPs, K-doped ZnO NPs demonstrated higher toxicity. The results confirmed that the doped potassium could increase cytotoxicity. The IC50 of K-doped ZnO NPs, pure ZnO NPs, and the examined control drug were 497 ± 15, 769 ± 12, and 606 ± 19 µg/mL, respectively. Considering the obtained IC50 of K-doped ZnO NPs, they were more toxic to the cancer cell lines and had less cytotoxicity on normal macrophage cells.


Assuntos
Nanoestruturas/química , Plantas/química , Potássio/química , Óxido de Zinco/química
19.
Int J Biol Macromol ; 195: 356-383, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920057

RESUMO

As well-appreciated biomarkers, tumor markers have been spotlighted as reliable tools for predicting the behavior of different tumors and helping clinicians ascertain the type of molecular mechanism of tumorigenesis. The sensitivity and specificity of these markers have made them an object of even broader interest for sensitive detection and staging of various cancers. Enzyme-linked immunosorbent assay (ELISA), fluorescence-based, mass-based, and electrochemical-based detections are current techniques for sensing tumor markers. Although some of these techniques provide good selectivity, certain obstacles, including a low sample concentration or difficulty carrying out the measurement, limit their application. With the advent of nanotechnology, many studies have been carried out to synthesize and employ nanomaterials (NMs) in sensing techniques to determine these tumor markers at low concentrations. The fabrication, sensitivity, design, and multiplexing of sensing techniques have been uplifted due to the attractive features of NMs. Various NMs, such as magnetic and metal nanoparticles, up-conversion NPs, carbon nanotubes (CNTs), carbon-based NMs, quantum dots (QDs), and graphene-based nanosensors, hyperbranched polymers, optical nanosensors, piezoelectric biosensors, paper-based biosensors, microfluidic-based lab-on-chip sensors, and hybrid NMs have proven effective in detecting tumor markers with great sensitivity and selectivity. This review summarizes various categories of NMs for detecting these valuable markers, such as prostate-specific antigen (PSA), human carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA125), cancer antigen 15-3 (CA15-3, MUC1), and cancer antigen 19-9 (CA19-9), and highlights recent nanotechnology-based advancements in detection of these prognostic biomarkers.


Assuntos
Biomarcadores Tumorais/análise , Nanotecnologia/tendências , Neoplasias/diagnóstico , Técnicas Biossensoriais , Antígeno Ca-125 , Antígeno CA-19-9 , Antígeno Carcinoembrionário , Gonadotropina Coriônica , Humanos , Nanoestruturas , Nanotubos de Carbono , Antígeno Prostático Específico , Receptor ErbB-2 , alfa-Fetoproteínas
20.
Sci Rep ; 11(1): 23479, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873281

RESUMO

In this study, a simple and green strategy was reported to prepare bimetallic nanoparticles (NPs) by the combination of zinc oxide (ZnO) and copper oxide (CuO) using Sambucus nigra L. extract. The physicochemical properties of these NPs such as crystal structure, size, and morphology were studied by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and transmission electron microscopy (TEM). The results suggested that these NPs contained polygonal ZnO NPs with hexagonal phase and spherical CuO NPs with monoclinic phase. The anticancer activity of the prepared bimetallic NPs was evaluated against lung and human melanoma cell lines based on MTT assay. As a result, the bimetallic ZnO/CuO NPs exhibited high toxicity on melanoma cancer cells while their toxicity on lung cancer cells was low.


Assuntos
Cobre/química , Cobre/farmacologia , Citotoxinas/farmacologia , Nanopartículas Metálicas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Células A549 , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Citotoxinas/química , Química Verde/métodos , Humanos , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica de Transmissão/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Sambucus nigra/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...