Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimmunomodulation ; 30(1): 196-205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37336193

RESUMO

The assumption of the pineal hormone melatonin as a therapeutic use for COVID-19-affected people seems promising. Its intake has shown significant improvement in the patients' conditions. Higher melatonin titers in children may provide a protective shield against this disease. The hormone melatonin works as an anti-inflammatory, antioxidant, immunomodulator, and strategically slows down the cytokine release which is observed in the COVID-19 disease, thereby improving the overall health of afflicted patients. The medical community is expected shortly to use remedial attributes like anti-inflammatory, antioxidant, antivirals, etc., of melatonin in the successful prevention and cure of COVID-19 morbidity. Thus, the administration of melatonin seems auspicious in the cure and prevention of this COVID-19 fatality. Moreover, melatonin does not seem to reduce the efficiency of approved vaccines against the SARS-CoV-2 virus. Melatonin increases the production of inflammatory cytokines and Th1 and enhances both humoral and cell-mediated responses. Through the enhanced humoral immunity, melatonin exhibits antiviral activities by suppressing multiple inflammatory products such as IL-6, IL1ß, and tumor necrosis factor α, which are immediately released during lung injury of severe COVID-19. Hence, the novel use of melatonin along with other antivirals as an early treatment option against COVID-19 infection is suggested. Here, we have chalked out the invasion mechanisms and appropriate implications of the latest findings concerned with melatonin against the virus SARS-CoV-2. Nevertheless, within the setting of a clinical intervention, the promising compounds must go through a series of studies before their recommendation. In the clinical field, this is done in a time-ordered sequence, in line with the phase label affixed to proper protocol of trials: phase I-phase II and the final phase III. Nevertheless, while medical recommendations can only be made on the basis of reassuring evidence, there are still three issues worth considering before implementation: representativeness, validity, and lastly generalizability.


Assuntos
COVID-19 , Melatonina , Criança , Humanos , Melatonina/uso terapêutico , SARS-CoV-2 , Antioxidantes/uso terapêutico , Antivirais/uso terapêutico , Anti-Inflamatórios/uso terapêutico
2.
Environ Sci Technol ; 56(7): 4029-4038, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35302757

RESUMO

Efforts to understand macroplastic pollution have primarily focused on coastal and marine environments to the exclusion of freshwater, terrestrial, and urban ecosystems. To better understand macroplastics in the environment and their sources, a dual approach examining plastic input and leakage can be used. In this study, litter aggregation pathways at 40 survey sites with varying ambient population counts in the Ganges River Basin were surveyed in pre- and postmonsoon seasons. We examine active litter leakage using transect surveys of on-the-ground items, in conjunction with assessments of single-use plastic consumer products at the point of sale. We find that sites with low populations have a significantly higher number of littered items per 1,000 people than those with mid to high populations. Over 75% of litter items were plastics or multimaterial items containing plastic, and tobacco products and plastic food wrappers were the most recorded items. There was no significant variation of litter densities pre- and postmonsoon. Most single-use plastic consumer products were manufactured in-country, but approximately 40% of brands were owned by international companies. Stratified sampling of active litter input and consumer products provides a rapid, replicable snapshot of plastic use and leakage.


Assuntos
Rios , Resíduos , Ecossistema , Monitoramento Ambiental , Humanos , Plásticos , Resíduos/análise
3.
Sci Total Environ ; 756: 143305, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33199004

RESUMO

Abandoned, lost or otherwise discarded fishing gear represents a substantial proportion of global marine plastic pollution and can cause significant environmental and socio-economic impacts. Yet little is known about its presence in, and implications for, freshwater ecosystems or its downstream contribution to plastic pollution in the ocean. This study documents fishing gear-related debris in one of the world's largest plastic pollution contributing river catchments, the Ganges. Riverbank surveys conducted along the length of the river, from the coast in Bangladesh to the Himalaya in India, show that derelict fishing gear density increases with proximity to the sea. Fishing nets were the main gear type by volume and all samples examined for polymer type were plastic. Illegal gear types and restricted net mesh sizes were also recorded. Socio-economic surveys of fisher communities explored the behavioural drivers of plastic waste input from one of the world's largest inland fisheries and revealed short gear lifespans and high turnover rates, lack of appropriate end-of-life gear disposal methods and ineffective fisheries regulations. A biodiversity threat assessment identified the air-breathing aquatic vertebrate species most at risk of entanglement in, and impacts from, derelict fishing gear; namely species of threatened freshwater turtle and otter, and the endangered Ganges river dolphin. This research demonstrates a need for targeted and practical interventions to limit the input of fisheries-related plastic pollution to this major river system and ultimately, the global ocean. The approach used in this study could be replicated to examine the inputs, socio-economic drivers and ecological impacts of this previously uncharacterised but important source of plastic pollution in other major rivers worldwide.

4.
Biotechnol Rep (Amst) ; 26: e00459, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32395437

RESUMO

In this study, the optimization of distinctive environmental factors such as pH, temperature, agitation-speed and atrazine-concentration on atrazine degradation by utilizing Bacillus badius ABP6 strain, has been done through response-surface-methodology (RSM). The optimum-conditions after analysis for the maximum atrazine degradation were: pH 7.05, temperature 30.4 °C, agitation-speed 145.7 rpm, and atrazine-concentration 200.9 ppm. The prescribed model was approved for high F-value (95.92), very low P-value (<0.01) and non- significant lack of fit (0.1627). It was observed that under the optimized-conditions, the R2 value of regression models for all the response variables was 0.9897 and the maximum atrazine degradation i.e. 89.7 % was found. Finally for graphical representation, the validated optimum-conditions of variables and responses were simulated using three dimensional plots (3D). The confirmation of the model is successful to suggest the optimization parameters of atrazine degradation under in-situ condition by bacterial isolate employing response-surface-methodology optimization tool of Design expert software (new version 10.0.1).

5.
Sci Rep ; 8(1): 17831, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30546039

RESUMO

In this study, a novel immobilizing carrier with α-Fe2O3 magnetic nanoparticles was developed and used for immobilization of atrazine-degrading bacterial isolates of Bacillus spp. Since the free cells of microorganisms generally not succeed to degrade pollutants; thus, extra treatments are alluring to make strides biodegradation. Scanning electron microscope (SEM) images appeared that after immobilization the bacterial cells were totally retained and entirely distributed on the surface of α-Fe2O3 magnetic nanoparticles. The performance of α-Fe2O3 immobilized cells in atrazine (ATZ) degradation was compared with the free cells, which was about 90.56% in 20 days. Experimental results exhibited that ATZ could be degraded at a broad range of physicochemical parameters viz. pH (4.0 to 9.0), temperature (20 to 45 °C), ATZ concentration (50 to 300 mg L-1) and agitation speed (50 to 300 rpm), which underlines that α-Fe2O3 immobilized cells could tolerate a higher range of ATZ concentration as compared to free cells. This research demonstrated that α-Fe2O3 could be applied as a potential carrier in cell immobilization and biodegradation of ATZ herbicide with greater efficiency.


Assuntos
Atrazina/metabolismo , Bacillus/metabolismo , Células Imobilizadas/metabolismo , Nanopartículas de Magnetita/química , Bacillus/citologia , Biodegradação Ambiental , Células Imobilizadas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...