Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 42(9): 2144-2149, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38461047

RESUMO

Intranasal administration of vaccines is an attractive delivery route to fight viral respiratory infections. However, there are only a few intranasal vaccines used in human, emphasizing the critical need to identify novel safe mucosal adjuvants and antigen delivery systems to expand their usage. We recently revealed an immunostimulating nanoparticle based on a fragment (R4R5) of the Curli-specific gene A (CsgA) protein that confers protection against influenza A virus (IAV) when conjugated to three repeats of the highly conserved M2e epitope and administrated intramuscularly. Herein, the efficacy of this 3M2e-R4R5 nanovaccine was investigated upon administration by intranasal instillation. By triggering robust M2e-specific humoral and cellular responses, both systemic and locally in the respiratory tract, and by priming alveolar macrophages, the intranasal vaccine protected mice against a lethal IAV challenge without the use of additional adjuvant. Thus, CsgA-based nanostructures could serve as a safe and self-adjuvanted antigen delivery system for mucosal immunization.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Nanovacinas , Administração Intranasal , Epitopos , Adjuvantes Imunológicos , Anticorpos Antivirais , Camundongos Endogâmicos BALB C
2.
Biomacromolecules ; 24(11): 5290-5302, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831506

RESUMO

Proteinaceous amyloid fibrils are one of the stiffest biopolymers due to their extensive cross-ß-sheet quaternary structure, whereas cellulose nanofibrils (CNFs) exhibit interesting properties associated with their nanoscale size, morphology, large surface area, and biodegradability. Herein, CNFs were supplemented with amyloid fibrils assembled from the Curli-specific gene A (CsgA) protein, the main component of bacterial biofilms. The resulting composites showed superior mechanical properties, up to a 7-fold increase compared to unmodified CNF films. Wettability and thermogravimetric analyses demonstrated high surface hydrophobicity and robust thermal tolerance. Bulk spectroscopic characterization of CNF-CsgA films revealed key insights into the molecular organization within the bionanocomposites. Atomic force microscopy and photoinduced force microscopy revealed the high-resolution location of curli assemblies into the CNF films. This novel sustainable and cost-effective CNF-based bionanocomposites supplemented with intertwined bacterial amyloid fibrils opens novel directions for environmentally friendly applications demanding high mechanical, water-repelling properties, and thermal resistance.


Assuntos
Celulose , Nanofibras , Celulose/química , Amiloide/química , Biopolímeros/química , Proteínas Amiloidogênicas , Microscopia de Força Atômica , Nanofibras/química
3.
Adv Healthc Mater ; 12(21): e2300224, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031161

RESUMO

Proteinaceous nanoparticles constitute efficient antigen delivery systems in vaccine formulations due to their size and repetitive nature that mimic most invading pathogens and promote immune activation. Nonetheless, the coadministration of an adjuvant with subunit nanovaccines is usually required to induce a robust, long-lasting, and protective immune response. Herein, the protein Curli-specific gene A (CsgA), which is known to self-assemble into nanofilaments contributing to bacterial biofilm, is exploited to engineer an intrinsically immunostimulatory antigen delivery platform. Three repeats of the M2e antigenic sequence from the influenza A virus matrix 2 protein are merged to the N-terminal domain of engineered CsgA proteins. These chimeric 3M2e-CsgA spontaneously self-assemble into antigen-displaying cross-ß-sheet nanofilaments that activate the heterodimeric toll-like receptors 2 and 1. The resulting nanofilaments are avidly internalized by antigen-presenting cells and stimulate the maturation of dendritic cells. Without the need of any additional adjuvants, both assemblies show robust humoral and cellular immune responses, which translate into complete protection against a lethal experimental infection with the H1N1 influenza virus. Notably, these CsgA-based nanovaccines induce neither overt systemic inflammation, nor reactogenicity, upon mice inoculation. These results highlight the potential of engineered CsgA nanostructures as self-adjuvanted, safe, and versatile antigen delivery systems to fight infectious diseases.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Autoantígenos , Adjuvantes Imunológicos , Proteínas da Matriz Viral , Anticorpos Antivirais , Camundongos Endogâmicos BALB C
4.
Vaccines (Basel) ; 10(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36423016

RESUMO

Vaccination has saved billions of human lives and has considerably reduced the economic burden associated with pandemic and endemic infectious diseases. Notwithstanding major advancements in recent decades, multitude diseases remain with no available effective vaccine. While subunit-based vaccines have shown great potential to address the safety concerns of live-attenuated vaccines, their limited immunogenicity remains a major drawback that still needs to be addressed for their use fighting infectious illnesses, autoimmune disorders, and/or cancer. Among the adjuvants and delivery systems for antigens, bacterial proteinaceous supramolecular structures have recently received considerable attention. The use of bacterial proteins with self-assembling properties to deliver antigens offers several advantages, including biocompatibility, stability, molecular specificity, symmetrical organization, and multivalency. Bacterial protein nanoassemblies closely simulate most invading pathogens, acting as an alarm signal for the immune system to mount an effective adaptive immune response. Their nanoscale architecture can be precisely controlled at the atomic level to produce a variety of nanostructures, allowing for infinite possibilities of organized antigen display. For the bottom-up design of the proteinaceous antigen delivery scaffolds, it is essential to understand how the structural and physicochemical properties of the nanoassemblies modulate the strength and polarization of the immune responses. The present review first describes the relationships between structure and the generated immune responses, before discussing potential and current clinical applications.

5.
Polymers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685293

RESUMO

Reclamation of tailings ponds is a critical issue for the oil industry. After years of consolidation, the slurry in tailings ponds, also known as fluid fine tailings, is mainly comprised of residual bitumen, water, and fine clay particles. To reclaim the lands that these ponds occupy, separation of the solid particles from the liquid phase is necessary to facilitate water removal and recycling. Traditionally, synthetic polymers have been used as flocculants to facilitate this process, but they can have negative environmental consequences. The use of biological polymers may provide a more environmentally friendly approach to flocculation, and eventual soil remediation, due to their natural biodegradability. Peptides derived from specified risk materials (SRM), a proteinaceous waste stream derived from the rendering industry, were investigated to assess their viability for this application. While these peptides could achieve >50% settling within 3 h in bench-scale settling tests using kaolinite tailings, crosslinking peptides with glutaraldehyde greatly improved their flocculation performance, leading to a >50% settling in only 10 min. Settling experiments using materials obtained through different reactant ratios during crosslinking identified a local optimum molar reactant ratio of 1:32 (peptide amino groups to glutaraldehyde aldehyde groups), resulting in 81.6% settling after 48 h. Taken together, these data highlight the novelty of crosslinking waste-derived peptides with glutaraldehyde to generate a value-added bioflocculant with potential for tailings ponds consolidation.

6.
Obes Surg ; 31(8): 3692-3699, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34050884

RESUMO

BACKGROUND: Bariatric surgery presently is the best possible intervention for treatment of severe obesity and its related conditions. This study presents retrospective data on the pregnancy outcomes of Indian patients who underwent bariatric surgery before conception. METHODOLOGY: This is a single-centre retrospective, observational study. Data on demographics, pre-surgery weight, body mass index (BMI), types of bariatric surgery, weight at conception, weight gain during pregnancy, type of delivery and the health of the baby were collected and analysed to study the weight loss pattern and pregnancy outcomes in female patients of childbearing potential. RESULTS: The study included 34 women of childbearing potential (BMI>30 kg/m2) who underwent bariatric surgery. The study population was followed up from the time of surgery until 1-year post-delivery of the baby. The mean weight gain during the pregnancy was 14.9±5.4 kg. Twenty-three underwent LSCS, and the rest had normal delivery with mean baby weight of 2.5±0.4 kg. Six babies required neonatal intensive care. In our series, only 4 of 35 cohorts that are only 11% had substantial weight retention (range 5-13 kg) at the end of 12 months which is significantly lower than the normal cohorts who did not undergo bariatric surgery. CONCLUSION: Bariatric surgery improves fertility with safe pregnancy and its outcomes in terms of preeclampsia, eclampsia, gestational diabetes, premature rupture of the membranes (PROM), postpartum haemorrhage (PPH) and puerperal sepsis in women with childbearing potential and safe for offspring in terms of shoulder dystocia, macrosomia, birth asphyxia and perinatal mortality. However, they should be well aware of the risks associated with bariatric surgery especially the mal-absorptive procedures.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Complicações na Gravidez , Cirurgia Bariátrica/efeitos adversos , Feminino , Humanos , Índia/epidemiologia , Recém-Nascido , Obesidade , Obesidade Mórbida/cirurgia , Gravidez , Complicações na Gravidez/epidemiologia , Complicações na Gravidez/etiologia , Resultado da Gravidez/epidemiologia , Estudos Retrospectivos
7.
RSC Adv ; 10(45): 27152-27160, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515757

RESUMO

The influence of drying on cellulose accessibility and enzymatic hydrolysis was assessed. Dissolving pulp was differentially dried by freeze-, air- and oven-drying at 50 °C and subsequently hydrolyzed using the commercial CTec 3 cellulase preparation. It was apparent that drying reduced the ease of enzymatic hydrolysis of all of the substrates with a pronounced reduction (48%) exhibited by the oven-dried pulp. To assess if the ease of hydrolysis was due to enzyme accessibility to the substrate, microscopy (SEM), FTIR spectroscopy, water retention value (WRV), fiber aspect ratio analysis, Simons' stain and the selective binding of Fluorescent Protein-tagged Carbohydrate Binding Modules (FP-CBMs): CBM3a (crystalline cellulose) and CBM17 (amorphous cellulose) in combination with confocal laser scanning microscopy (CLSM) were used. The combined methods indicated that, if the gross characteristics of the substrate limited enzyme accessibility, the cellulases, as represented by the FP-CBMs, could not in turn access the finer structural components of the cellulosic substrates.

8.
Bioresour Technol ; 282: 398-406, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30884460

RESUMO

Lignocellulosic biomass is a sustainable source of renewable substrate to produce low carbon footprint energy and materials. Biomass conversion is usually performed in two steps: a biomass pretreatment for improving cellulose accessibility followed by enzymatic hydrolysis of cellulose. In this study we investigated the efficiency of a bioextrusion pretreatment (extrusion in the presence of cellulase enzyme) for production of reducing sugars from corn crop agricultural residues. Our results demonstrate that bioextrusion increased the reducing sugar conversion yield by at least 94% at high solid/liquid ratio (14%-40%). Monitoring biomass surface with carbohydrate-binding modules (FTCM-depletion assay) revealed that well known negative impact of high solid/liquid ratio on conversion yield is not due to the lack of exposed cellulose which was abundant under such conditions. Bioextrusion was found to be less efficient on alkaline pretreated biomass but being a mild and solvent limiting pretreatment, it might help to minimize the waste stream.


Assuntos
Biomassa , Zea mays/metabolismo , Metabolismo dos Carboidratos , Carboidratos , Celulase/metabolismo , Celulose/metabolismo , Hidrólise
9.
Biotechnol Biofuels ; 11: 144, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796085

RESUMO

BACKGROUND: Pretreatment of lignocellulosic biomass (LCB) is a key step for its efficient bioconversion into ethanol. Determining the best pretreatment and its parameters requires monitoring its impacts on the biomass material. Here, we used fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay to study the relationship between surface-exposed polysaccharides and enzymatic hydrolysis of LCB. RESULTS: Our results indicated that alkali extrusion pretreatment led to the highest hydrolysis rates for alfalfa stover, cattail stems and flax shives, despite its lower lignin removal efficiency compared to alkali pretreatment. Corn crop residues were more sensitive to alkali pretreatments, leading to higher hydrolysis rates. A clear relationship was consistently observed between total surface-exposed cellulose detected by the FTCM-depletion assay and biomass enzymatic hydrolysis. Comparison of bioconversion yield and total composition analysis (by NREL/TP-510-42618) of LCB prior to or after pretreatments did not show any close relationship. Lignin removal efficiency and total cellulose content (by NREL/TP-510-42618) led to an unreliable prediction of enzymatic polysaccharide hydrolysis. CONCLUSIONS: Fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay provided direct evidence that cellulose exposure is the key determinant of hydrolysis yield. The clear and robust relationships that were observed between the cellulose accessibility by FTCM probes and enzymatic hydrolysis rates change could be evolved into a powerful prediction tool that might help develop optimal biomass pretreatment strategies for biofuel production.

10.
Biotechnol Biofuels ; 10: 293, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29225698

RESUMO

BACKGROUND: Lignocellulosic biomass will progressively become the main source of carbon for a number of products as the Earth's oil reservoirs disappear. Technology for conversion of wood fiber into bioproducts (wood biorefining) continues to flourish, and access to reliable methods for monitoring modification of such fibers is becoming an important issue. Recently, we developed a simple, rapid approach for detecting four different types of polymer on the surface of wood fibers. Named fluorescent-tagged carbohydrate-binding module (FTCM), this method is based on the fluorescence signal from carbohydrate-binding modules-based probes designed to recognize specific polymers such as crystalline cellulose, amorphous cellulose, xylan, and mannan. RESULTS: Here we used FTCM to characterize pulps made from softwood and hardwood that were prepared using Kraft or chemical-thermo-mechanical pulping. Comparison of chemical analysis (NREL protocol) and FTCM revealed that FTCM results were consistent with chemical analysis of the hemicellulose composition of both hardwood and softwood samples. Kraft pulping increased the difference between softwood and hardwood surface mannans, and increased xylan exposure. This suggests that Kraft pulping leads to exposure of xylan after removal of both lignin and mannan. Impact of enzyme cocktails from Trichoderma reesei (Celluclast 1.5L) and from Aspergillus sp. (Carezyme 1000L) was investigated by analysis of hydrolyzed sugars and by FTCM. Both enzymes preparations released cellobiose and glucose from pulps, with the cocktail from Trichoderma being the most efficient. Enzymatic treatments were not as effective at converting chemical-thermomechanical pulps to simple sugars, regardless of wood type. FTCM revealed that amorphous cellulose was the primary target of either enzyme preparation, which resulted in a higher proportion of crystalline cellulose on the surface after enzymatic treatment. FTCM confirmed that enzymes from Aspergillus had little impact on exposed hemicelluloses, but that enzymes from the more aggressive Trichoderma cocktail reduced hemicelluloses at the surface. CONCLUSIONS: Overall, this study indicates that treatment with enzymes from Trichoderma is appropriate for generating crystalline cellulose at fiber surface. Applications such as nanocellulose or composites requiring chemical resistance would benefit from this enzymatic treatment. The milder enzyme mixture from Aspergillus allowed for removal of amorphous cellulose while preserving hemicelluloses at fiber surface, which makes this treatment appropriate for new paper products where surface chemical responsiveness is required.

11.
Biotechnol Biofuels ; 9: 74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27019671

RESUMO

BACKGROUND: Xylan has been identified as a physical barrier which limits cellulose accessibility by covering the outer surface of fibers and interfibrillar space. Therefore, tracking xylan is a prerequisite for understanding and optimizing lignocellulosic biomass processes. RESULTS: In this study, we developed a novel xylan tracking approach using a two-domain probe called OC15 which consists of a fusion of Cellvibrio japonicus carbohydrate-binding domain 15 with the fluorescent protein mOrange2. The new probe specifically binds to xylan with an affinity similar to that of CBM15. The sensitivity of the OC15-xylan detection approach was compared to that of standard methods such as X-ray photoelectron spectroscopy (XPS) and chemical composition analysis (NREL/TP-510-42618). All three approaches were used to analyze the variations of xylan content of kraft pulp fibers. XPS, which allows for surface analysis of fibers, did not clearly indicate changes in xylan content. Chemical composition analysis responded to the changes in xylan content, but did not give any specific information related to the fibers surface. Interestingly, only the OC15 probe enabled the highly sensitive detection of xylan variations at the surface of kraft pulp fibers. At variance with the other methods, the OC15 probe can be used in a high throughput format. CONCLUSIONS: We developed a rapid and high throughput approach for the detection of changes in xylan exposure at the surface of paper fibers. The introduction of this method into the lignocellulosic biomass-based industries should revolutionize the understanding and optimization of most wood biomass processes.

12.
Carbohydr Polym ; 109: 139-47, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24815410

RESUMO

Cellulose fiber sheets impregnated with saccharide capped-ZnO nanoparticles were used as bioactive materials for antibody immobilization. First, ZnO nanoparticles were synthesized in the presence of glucose (monosaccharide), sucrose (disaccharide) as well as alginic acid and starch (polysaccharides). The pine cellulose fibers were then modified by the obtained saccharide capped nanoparticles and further incorporated into the sheets. The presence of ZnO significantly improved the immobilization of the antibodies on the surface of the sheets. After rewetting the alginic acid-ZnO modified sheets with saline solution, the retention of antibodies was about 95%. A high degree of the immobilization of biomolecules is an important feature for possible fabrications of bioactive- or biosensing-papers and we successfully tested the sheets on the detection of blood types using (A, B, and D blood antibodies). The ZnO nanoparticles affected also the other properties of the sheets. The ZnO-modified fiber sheets showed higher values of tensile index (strength), smoothness and opacity, while the value of porosity was substantially lower than that of the unmodified sheet. The presence of ZnO nanoparticles provided also the antimicrobial activity to the sheets. They showed a strong activity against bacteria (Escherichia coli and Staphylococcus aureus) and strong resistance to the attack of cellulase producing fungus Gloeophyllum trabeum.


Assuntos
Anticorpos/química , Celulose/análogos & derivados , Celulose/química , Proteínas Imobilizadas/química , Óxido de Zinco/química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Celulose/farmacologia , Celulose/ultraestrutura , Teste em Amostras de Sangue Seco , Testes de Sensibilidade Microbiana , Nanopartículas/química , Porosidade , Resistência à Tração , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA