Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(21): 10696-10714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36529187

RESUMO

Non-typhoidal Salmonella (NTS) is one of the leading bacterial causes of many invasive human infections with a high antibiotic resistance profile. With this concern, the current study aimed to design an effective epitope-based peptide vaccine against NTS species as a successive and substitutive protective measure of invasive NTS disease. To design rationally, the current study considered a comprehensive in silico workflow combination of both immunoinformatics and molecular modeling approaches, including molecular docking and molecular dynamics (MD) simulation. We identified the two most promising T cell epitopes KVLYGIFAI and YGIFAITAL, and three B cell epitopes AAPVQVGEAAGS, TGGGDGSNT, and TGGGDGSNTGTTTT, in the outer membrane of NTS. Using these epitopes, a multiepitope vaccine was subsequently constructed along with appropriate adjuvant and linkers, which showed a good binding affinity and stability with toll-like receptor 2 (TLR2) in both molecular docking and MD simulation. Furthermore, in silico immune simulation described a strong immune response with a high number of antibodies, interferon-γ, and activated B and T cells. This study collectively suggests that predicted vaccine constructs could be considered potential vaccine candidates against common NTS species.Communicated by Ramaswamy H. Sarma.


Assuntos
Epitopos de Linfócito B , Epitopos de Linfócito T , Humanos , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas , Simulação de Dinâmica Molecular , Salmonella , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...