Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36979488

RESUMO

The aim of this work is to verify the possibility of transport of 26 biologically active ultrashort peptides (USPs) into cells via LAT and PEPT family transporters. Molecular modeling and computer-assisted docking of peptide ligands revealed that the size and structure of ligand-binding sites of the amino acid transporters LAT1, LAT2, and of the peptide transporter PEPT1 are sufficient for the transport of the 26 biologically active di-, tri-, and tetra-peptides. Comparative analysis of the binding of all possible di- and tri-peptides (8400 compounds) at the binding sites of the LAT and PEPT family transporters has been carried out. The 26 biologically active USPs systematically showed higher binding scores to LAT1, LAT2, and PEPT1, as compared with di- and tri-peptides, for which no biological activity has been established. This indicates an important possible role which LAT and PEPT family transporters may play in a variety of biological activities of the 26 biologically active peptides under investigation in this study. Most of the 26 studied USPs were found to bind to the LAT1, LAT2, and PEPT1 transporters more efficiently than the known substrates or inhibitors of these transporters. Peptides ED, DS, DR, EDR, EDG, AEDR, AEDL, KEDP, and KEDG, and peptoids DS7 and KE17 with negatively charged Asp- or Glu- amino acid residues at the N-terminus and neutral or positively charged residues at the C-terminus of the peptide are found to be the most effective ligands of the transporters under investigation. It can be assumed that the antitumor effect of the KE, EW, EDG, and AEDG peptides could be associated with their ability to inhibit the LAT1, LAT2, and PEPT1 amino acid transporters. The data obtained lead to new prospects for further study of the mechanisms of transport of USP-based drugs into the cell and design of new antitumor drugs.


Assuntos
Aminoácidos , Peptídeos , Estudos de Viabilidade , Aminoácidos/metabolismo , Peptídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico
2.
Molecules ; 26(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834147

RESUMO

Peptides are characterized by their wide range of biological activity: they regulate functions of the endocrine, nervous, and immune systems. The mechanism of such action of peptides involves their ability to regulate gene expression and protein synthesis in plants, microorganisms, insects, birds, rodents, primates, and humans. Short peptides, consisting of 2-7 amino acid residues, can penetrate into the nuclei and nucleoli of cells and interact with the nucleosome, the histone proteins, and both single- and double-stranded DNA. DNA-peptide interactions, including sequence recognition in gene promoters, are important for template-directed synthetic reactions, replication, transcription, and reparation. Peptides can regulate the status of DNA methylation, which is an epigenetic mechanism for the activation or repression of genes in both the normal condition, as well as in cases of pathology and senescence. In this context, one can assume that short peptides were evolutionarily among the first signaling molecules that regulated the reactions of template-directed syntheses. This situation enhances the prospects of developing effective and safe immunoregulatory, neuroprotective, antimicrobial, antiviral, and other drugs based on short peptides.


Assuntos
Metilação de DNA , Epigênese Genética , Histonas/metabolismo , Peptídeos/metabolismo , Transdução de Sinais , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...