Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(10): 100401, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518326

RESUMO

Systems subject to high-frequency driving exhibit Floquet prethermalization, that is, they heat exponentially slowly on a timescale that is large in the drive frequency, τ_{h}∼exp(ω). Nonetheless, local observables can decay much faster via energy conserving processes, which are expected to cause a rapid decay in the fidelity of an initial state. Here we show instead that the fidelities of eigenstates of the time-averaged Hamiltonian, H_{0}, display an exponentially long lifetime over a wide range of frequencies-even as generic initial states decay rapidly. When H_{0} has quantum scars, or highly excited eigenstates of low entanglement, this leads to long-lived nonthermal behavior of local observables in certain initial states. We present a two-channel theory describing the fidelity decay time τ_{f}: the interzone channel causes fidelity decay through energy absorption, i.e., coupling across Floquet zones, and ties τ_{f} to the slow heating timescale, while the intrazone channel causes hybridization between states in the same Floquet zone. Our work informs the robustness of experimental approaches for using Floquet engineering to generate interesting many-body Hamiltonians, with and without scars.

2.
Phys Rev Lett ; 131(10): 106301, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37739351

RESUMO

The dynamical phase diagram of interacting disordered systems has seen substantial revision over the past few years. Theory must now account for a large prethermal many-body localized regime in which thermalization is extremely slow, but not completely arrested. We derive a quantitative description of these dynamics in short-ranged one-dimensional systems using a model of successive many-body resonances. The model explains the decay timescale of mean autocorrelators, the functional form of the decay-a stretched exponential-and relates the value of the stretch exponent to the broad distribution of resonance timescales. The Jacobi method of matrix diagonalization provides numerical access to this distribution, as well as a conceptual framework for our analysis. The resonance model correctly predicts the stretch exponents for several models in the literature. Successive resonances may also underlie slow thermalization in strongly disordered systems in higher dimensions, or with long-range interactions.

3.
Phys Rev Lett ; 130(23): 230403, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354418

RESUMO

Classical shadows are a powerful method for learning many properties of quantum states in a sample-efficient manner, by making use of randomized measurements. Here we study the sample complexity of learning the expectation value of Pauli operators via "shallow shadows," a recently proposed version of classical shadows in which the randomization step is effected by a local unitary circuit of variable depth t. We show that the shadow norm (the quantity controlling the sample complexity) is expressed in terms of properties of the Heisenberg time evolution of operators under the randomizing ("twirling") circuit-namely the evolution of the weight distribution characterizing the number of sites on which an operator acts nontrivially. For spatially contiguous Pauli operators of weight k, this entails a competition between two processes: operator spreading (whereby the support of an operator grows over time, increasing its weight) and operator relaxation (whereby the bulk of the operator develops an equilibrium density of identity operators, decreasing its weight). From this simple picture we derive (i) an upper bound on the shadow norm which, for depth t∼log(k), guarantees an exponential gain in sample complexity over the t=0 protocol in any spatial dimension, and (ii) quantitative results in one dimension within a mean-field approximation, including a universal subleading correction to the optimal depth, found to be in excellent agreement with infinite matrix product state numerical simulations. Our Letter connects fundamental ideas in quantum many-body dynamics to applications in quantum information science, and paves the way to highly optimized protocols for learning different properties of quantum states.

4.
Phys Rev Lett ; 126(6): 060501, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635716

RESUMO

The dynamics of entanglement in "hybrid" nonunitary circuits (for example, involving both unitary gates and quantum measurements) has recently become an object of intense study. A major hurdle toward experimentally realizing this physics is the need to apply postselection on random measurement outcomes in order to repeatedly prepare a given output state, resulting in an exponential overhead. We propose a method to sidestep this issue in a wide class of nonunitary circuits by taking advantage of spacetime duality. This method maps the purification dynamics of a mixed state under nonunitary evolution onto a particular correlation function in an associated unitary circuit. This translates to an operational protocol which could be straightforwardly implemented on a digital quantum simulator. We discuss the signatures of different entanglement phases, and demonstrate examples via numerical simulations. With minor modifications, the proposed protocol allows measurement of the purity of arbitrary subsystems, which could shed light on the properties of the quantum error correcting code formed by the mixed phase in this class of hybrid dynamics.

5.
Science ; 364(6437): 256-260, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31000657

RESUMO

An interacting quantum system that is subject to disorder may cease to thermalize owing to localization of its constituents, thereby marking the breakdown of thermodynamics. The key to understanding this phenomenon lies in the system's entanglement, which is experimentally challenging to measure. We realize such a many-body-localized system in a disordered Bose-Hubbard chain and characterize its entanglement properties through particle fluctuations and correlations. We observe that the particles become localized, suppressing transport and preventing the thermalization of subsystems. Notably, we measure the development of nonlocal correlations, whose evolution is consistent with a logarithmic growth of entanglement entropy, the hallmark of many-body localization. Our work experimentally establishes many-body localization as a qualitatively distinct phenomenon from localization in noninteracting, disordered systems.

6.
Phys Rev Lett ; 120(25): 257204, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29979078

RESUMO

Neural-network-based machine learning is emerging as a powerful tool for obtaining phase diagrams when traditional regression schemes using local equilibrium order parameters are not available, as in many-body localized (MBL) or topological phases. Nevertheless, instances of machine learning offering new insights have been rare up to now. Here we show that a single feed-forward neural network can decode the defining structures of two distinct MBL phases and a thermalizing phase, using entanglement spectra obtained from individual eigenstates. For this, we introduce a simplicial geometry-based method for extracting multipartite phase boundaries. We find that this method outperforms conventional metrics for identifying MBL phase transitions, revealing a sharper phase boundary and shedding new insight on the topology of the phase diagram. Furthermore, the phase diagram we acquire from a single disorder configuration confirms that the machine-learning-based approach we establish here can enable speedy exploration of large phase spaces that can assist with the discovery of new MBL phases. To our knowledge, this Letter represents the first example of a standard machine learning approach revealing new information on phase transitions.

7.
Philos Trans A Math Phys Eng Sci ; 375(2108)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29084883

RESUMO

We benchmark a variant of the recently introduced density matrix renormalization group (DMRG)-X algorithm against exact results for the localized random field XX chain. We find that the eigenstates obtained via DMRG-X exhibit a highly accurate l-bit description for system sizes much bigger than the direct, many-body, exact diagonalization in the spin variables is able to access. We take advantage of the underlying free fermion description of the XX model to accurately test the strengths and limitations of this algorithm for large system sizes. We discuss the theoretical constraints on the performance of the algorithm from the entanglement properties of the eigenstates, and its actual performance at different values of disorder. A small but significant improvement to the algorithm is also presented, which helps significantly with convergence. We find that, at high entanglement, DMRG-X shows a bias towards eigenstates with low entanglement, but can be improved with increased bond dimension. This result suggests that one must be careful when applying the algorithm for interacting many-body localized spin models near a transition.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

8.
Phys Rev Lett ; 119(7): 075702, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949665

RESUMO

We provide a systematic comparison of the many-body localization (MBL) transition in spin chains with nonrandom quasiperiodic versus random fields. We find evidence suggesting that these belong to two separate universality classes: the first dominated by "intrinsic" intrasample randomness, and the second dominated by external intersample quenched randomness. We show that the effects of intersample quenched randomness are strongly growing, but not yet dominant, at the system sizes probed by exact-diagonalization studies on random models. Thus, the observed finite-size critical scaling collapses in such studies appear to be in a preasymptotic regime near the nonrandom universality class, but showing signs of the initial crossover towards the external-randomness-dominated universality class. Our results provide an explanation for why exact-diagonalization studies on random models see an apparent scaling near the transition while also obtaining finite-size scaling exponents that strongly violate Harris-Chayes bounds that apply to disorder-driven transitions. We also show that the MBL phase is more stable for the quasiperiodic model as compared to the random one, and the transition in the quasiperiodic model suffers less from certain finite-size effects.

9.
Nature ; 543(7644): 221-225, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28277511

RESUMO

Understanding quantum dynamics away from equilibrium is an outstanding challenge in the modern physical sciences. Out-of-equilibrium systems can display a rich variety of phenomena, including self-organized synchronization and dynamical phase transitions. More recently, advances in the controlled manipulation of isolated many-body systems have enabled detailed studies of non-equilibrium phases in strongly interacting quantum matter; for example, the interplay between periodic driving, disorder and strong interactions has been predicted to result in exotic 'time-crystalline' phases, in which a system exhibits temporal correlations at integer multiples of the fundamental driving period, breaking the discrete time-translational symmetry of the underlying drive. Here we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of about one million dipolar spin impurities in diamond at room temperature. We observe long-lived temporal correlations, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions. This order is remarkably stable to perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.

10.
Phys Rev Lett ; 116(24): 247204, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27367405

RESUMO

The eigenstates of many-body localized (MBL) Hamiltonians exhibit low entanglement. We adapt the highly successful density-matrix renormalization group method, which is usually used to find modestly entangled ground states of local Hamiltonians, to find individual highly excited eigenstates of MBL Hamiltonians. The adaptation builds on the distinctive spatial structure of such eigenstates. We benchmark our method against the well-studied random field Heisenberg model in one dimension. At moderate to large disorder, the method successfully obtains excited eigenstates with high accuracy, thereby enabling a study of MBL systems at much larger system sizes than those accessible to exact-diagonalization methods.

11.
Phys Rev Lett ; 116(25): 250401, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391704

RESUMO

Clean and interacting periodically driven systems are believed to exhibit a single, trivial "infinite-temperature" Floquet-ergodic phase. In contrast, here we show that their disordered Floquet many-body localized counterparts can exhibit distinct ordered phases delineated by sharp transitions. Some of these are analogs of equilibrium states with broken symmetries and topological order, while others-genuinely new to the Floquet problem-are characterized by order and nontrivial periodic dynamics. We illustrate these ideas in driven spin chains with Ising symmetry.

12.
Science ; 352(6293): 1547-52, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27339981

RESUMO

A fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept and challenged our understanding of the connection between statistical physics and quantum mechanics. Here we report on the observation of a many-body localization transition between thermal and localized phases for bosons in a two-dimensional disordered optical lattice. With our single-site-resolved measurements, we track the relaxation dynamics of an initially prepared out-of-equilibrium density pattern and find strong evidence for a diverging length scale when approaching the localization transition. Our experiments represent a demonstration and in-depth characterization of many-body localization in a regime not accessible with state-of-the-art simulations on classical computers.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052133, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493765

RESUMO

We consider a quantum system A∪B made up of degrees of freedom that can be partitioned into spatially disjoint regions A and B. When the full system is in a pure state in which regions A and B are entangled, the quantum mechanics of region A described without reference to its complement is traditionally assumed to require a reduced density matrix on A. While this is certainly true as an exact matter, we argue that under many interesting circumstances expectation values of typical operators anywhere inside A can be computed from a suitable pure state on A alone, with a controlled error. We use insights from quantum statistical mechanics-specifically the eigenstate thermalization hypothesis (ETH)-to argue for the existence of such "representative states."

14.
Phys Rev Lett ; 113(6): 060501, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25148308

RESUMO

It is now commonly believed that the ground state entanglement spectrum (ES) exhibits universal features characteristic of a given phase. In this Letter, we show that this belief is false in general. Most significantly, we show that the entanglement Hamiltonian can undergo quantum phase transitions in which its ground state and low-energy spectrum exhibit singular changes, even when the physical system remains in the same phase. For broken symmetry problems, this implies that the low-energy ES and the Rényi entropies can mislead entirely, while for quantum Hall systems, the ES has much less universal content than assumed to date.

15.
J Phys Condens Matter ; 25(40): 404214, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24025618

RESUMO

We consider the non-equilibrium dynamics of topologically ordered systems driven across a continuous phase transition into proximate phases with no, or reduced, topological order. This dynamics exhibits scaling in the spirit of Kibble and Zurek but now without the presence of symmetry breaking and a local order parameter. The late stages of the process are seen to exhibit a slow, coarsening dynamics for the string-net that underlies the physics of the topological phase, a potentially interesting signature of topological order. We illustrate these phenomena in the context of particular phase transitions out of the Abelian Z2 topologically ordered phase of the toric code/Z2 gauge theory, and the non-Abelian SU(2)k ordered phases of the relevant Levin-Wen models.


Assuntos
Modelos Químicos , Modelos Moleculares , Transição de Fase , Termodinâmica , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...