Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 29(4): 124, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000284

RESUMO

CONTEXT: In this work, a comprehensive study concerning the physical properties of ternary alloys system (AlP1-xBix) at different concentrations is presented. The obtained results from our first-principle calculations are compared with previously reported studies in the literature and discussed in detail. Our computed results are found in a nice agreement where available with earlier reported results. Electronic band structures at the above-mentioned concentrations are also determined. Likewise, the impact of the varying temperature and pressure on Debye temperature, heat capacity, and entropy is analyzed as well. Furthermore, elastic constants and related elastic moduli results are also computed. Our results show that alloys are stable and found to be in brittle nature. This is the first quantitative study related to ternary alloys (AlP1-xBix) at mentioned concentrations. We soon expect the experimental confirmation of our predictions. METHOD: The calculations are performed, at concentrations x=0.0, 0.25, 0.5, 0.75, and 1.0 by using the "full potential (FP) linearized (L) augmented plane wave plus local orbital (APW+lo) method framed within density functional theory (DFT)" as recognized in the "WIEN2k computational code". The "quasi-harmonic Debye model" approach is employed to determine the thermal properties of the title alloys.

2.
J Mol Model ; 28(7): 182, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670891

RESUMO

The structural, electronic, elastic, and optical properties of ternary alloys GaPxBi1-x as a function of phosphorus concentration were studied using ab initio calculations. We have used the full-potential linearized augmented plane wave method-based density functional theory. The potentials have been described by the generalized gradient and modified Becke-Johnson approximations. Results on lattice parameters, energy band gap, bulk modulus, elastic, and optical properties are reported. They are in good agreement with available theoretical and experimental data. Moreover, the dependence of structural and electronic properties on the composition has been analyzed. A deviation from linearity is observed for the lattice constant and the bulk modulus. In addition, the elastic constants and moduli were calculated and used to examine the mechanical stability. Both parts of dielectric-function and other optical parameters have been analyzed.

4.
J Mol Graph Model ; 100: 107651, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32650288

RESUMO

The full potential linearized augmented plane wave (FP-LAPW) method was used to investigate the ground states as well as the mechanical, electronic, magnetic and optical properties of M3V (M: Pd, Pt) compounds. The generalized gradient approximation (GGA) of Perdew-Burke and Ernzerhof (PBE-GGA) is employed to treat the exchange-correlation potential for all the calculations except for structural properties where both Wu and Cohen generalized gradient approximation (WC-GGA) and Perdew and Wang local spin density approximation (LSDA) have been added. The cohesive energies, the formation enthalpies and the densities of states at the Fermi level N(EF) show that the D022 structure is more stable than D023 and L12. The lattice parameter and bulk modulus results agree well with the available experimental measurements and theoretical predictions. The elastic and mechanical properties are predicted and show that both compounds exhibit ductile behavior. Furthermore, our calculations of Debye and melting temperatures are in good agreements with experimental results reported in the literature. The densities of states (DOS) show that strong d-d hybridization is behind the formation of the pseudogap at the Fermi level. The contours of the valence charge densities show combinations of metallic and covalent bonds. The number of bonding electrons per atom nb, the electronic specific heat coefficient γ, and the electron-phonon coupling constant λ, are determined. The obtained values of the magnetic moments and polarization coincide with the reported values for both D022 and L12 structures. Moreover, the optical properties, including the dielectric functions, extinction coefficient K(ω), reflectivity coefficient R(ω) and energy loss function L(ω) are studied in the range of 0-14 eV.


Assuntos
Eletrônica , Elétrons , Magnetismo , Fônons , Termodinâmica
5.
J Mol Model ; 26(6): 147, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32435992

RESUMO

The structural stability and optoelectronic properties of the ternary Ba1-xBexS alloys along with the pure binary compounds BaS and BeS in the rock-salt (B1) and zinc-blende (B3) phases were investigated by the density functional theory (DFT) within the full-potential linearized augmented plane wave (FP-LAPW) method implemented in the Wien2k package. The generalized gradient approximation of Wu and Cohen (WC-GGA) was used for the exchange-correlation potential (Vxc) to compute the equilibrium structural parameters, lattice constant (a), and bulk modulus (B). In addition to the GGA approach, the modified Becke-Johnson potential of Tran and Blaha (TB-mBJ) scheme coupled with the spin-orbit interaction was used to calculate the band gap energies. Results reveal that BaS, Ba0.75Be0.25S, and Ba0.5Be0.5S compounds are stable in the rock-salt phase, while Ba0.25Be0.75S and BeS are found to be stable in the zinc-blende phase. The computed results for the band structures and optical constants are compared with other available theoretical calculations and experimental measurements.

6.
J Mol Model ; 26(6): 158, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32468317

RESUMO

Density functional theoretical (DFT) calculations were carried out to explore the electronic and optical properties of double ordered Ba2NaReO6, Ba2LiReO6, and Sr2LiReO6 perovskites by employing the state-of-the-art exchange-correlation potential, i.e., Tran-Blaha modified Becke-Johnson for the electronic system. The calculated electronic band structures show an indirect band gap along with a semiconductor nature. Total and partial densities of state peaks were analyzed in light of effective contributions of various electronic states. The significant optical parameters, including the components of dielectric constant, the energy loss function, the absorption coefficient, the reflectivity spectra, the refractive index, and the extinction coefficient, were computed and discussed in details for radiation up to 14 eV. Finally, we studied the inter-band contributions from the optical characteristics. Our present study might be considered as first theoretical quantitative calculations of the optical and electronic behavior in the cubic phase of double perovskite materials based on rhenium.

7.
RSC Adv ; 10(32): 18830-18840, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35518316

RESUMO

This paper focuses on the electronic and thermoelectric properties of monolayer MoS2. Here, we have examined the structure of MoS2, in which the hole in the center of the hexagonal cage is considered as a void atom, termed 1H-MoS2. Density functional theory (DFT) employing the generalized gradient approximation (GGA) and spin-orbit coupling (SOC) has been used for all calculations. Incorporation of SOC resulted in a significant change in the profile of the band energy, specifically the splitting of the valence band maximum (VBM) into two sub-bands. The "split-off" energy is found to be ∼20.6 meV. The reduction of the band gap with SOC is a prominent feature at the K-K location in the Brillouin zone. The band gap calculated with the GGA is ∼1.75 eV. However, on implementation of SOC, the GGA band gap was reduced to ∼1.68 eV. The frequency-dependent phonon dispersion curve was obtained to analyse the thermodynamical stability. 1H-MoS2 is found to be thermodynamically stable with no imaginary frequency. We report a low value of lattice thermal conductivity (κ l) and low electron effective masses, which are desirable for potential applications in thermoelectric devices.

8.
J Mol Graph Model ; 92: 296-302, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430680

RESUMO

We performed ab initio calculations to study the structural and optoelectronic properties of simple and slab phase TaNO using density functional theory (DFT), in which the full potential augmented plane wave (FP-LAPW) method was implemented using the computational code Wien 2k. The modified Becke-Johnson potential (mBJ-GGA) was used for these calculations. The calculated band structure and electronic properties revealed an indirect bandgap for simple TaNO (3.2 eV) and a direct bandgap for slab TaNO (1.5 eV). The interband electronic transitions were investigated from the band structure, and transition peaks were observed from the imaginary part of the dielectric function. These transitions are due to Ta-p, N-p and O-p orbitals for simple TaNO and Ta-p, N-s as well as O-p orbitals for slab TaNO. The plasmon energy was related to the main peak of the energy loss function, which was approximately 10 eV. The static value of the dielectric constant and the refraction were close to the experimental values. In general, slab TaNO shows different properties and is more suitable for optoelectronic applications due to direct bandgap.


Assuntos
Elétrons , Estrutura Molecular , Óxido Nítrico/química , Tantálio/química , Algoritmos , Teoria da Densidade Funcional , Modelos Moleculares , Análise Espectral
9.
J Mol Graph Model ; 92: 74-85, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344546

RESUMO

In order to shed light on the unexplored properties of the ternary nitride Ca4TiN4, we report for the first time the results of an ab initio study of its structural, electronic, elastic, chemical bonding and thermodynamic properties. Calculated equilibrium structural parameters are in excellent concordance with available experimental data. Electronic properties were explored through the calculation of the energy band dispersions and density of states. It is found that Ca4TiN4 has an indirect band gap (Z-Γ) of 1.625 (1.701) eV using LDA (GGA). Nature of the chemical bonding was studied via Mulliken population analysis and charge density distribution map. It is found that the Ca-N bond is dominantly ionic, whereas the Ti-N one is dominantly covalent. Elastic properties of both single-crystal and polycrystalline phases of the title compound were explored in details using the stain-stress approach. Analysis of the calculated elastic moduli reveals that the title compound is mechanically stable, ductile and elastically anisotropic. Temperature and pressure dependencies of the unit-cell volume, bulk modulus, heat capacities, volume thermal expansion coefficient, Grüneisen parameter and Debye temperature were investigated based on the quasiharmonic Debye model.


Assuntos
Cálcio/química , Complexos de Coordenação/química , Elasticidade , Modelos Teóricos , Termodinâmica , Titânio/química , Algoritmos , Módulo de Elasticidade , Elétrons , Modelos Químicos , Modelos Moleculares
10.
J Mol Graph Model ; 92: 140-146, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31352208

RESUMO

In this research paper, we studied the structural, electronic and thermal properties of the zinc blende ternary alloys (AlxGa1-xAs) by the use of first-principles calculations based on FP-LAPW method (Full Potential Linear Augmented Plane Wave) within DFT (Density Functional Theory). Basically, the impact dependence of the lattice constants, band gaps, bulk moduli, heat capacities, Debye temperatures and mixing entropies on the composition x were investigated for different values of x (x = 0, 0.25, 0.5, 0.75, and 1). The computed ground state properties for the parent binary compounds are in reasonable agreement with the available experimental and theoretical results. It is shown that the lattice constant demonstrated a marginal deviation for AlxGa1-xAs alloy from Vegard's law. It was observed for the studied alloy that significant deviation of the bulk modulus from LCD (Linear Concentration Dependence). Moreover, it was found that the variation of the energy band gap as function of composition is linear via the mBJ approximation. The thermal parameters of these alloys were investigated by means of the quasi-harmonic Debye model.


Assuntos
Ligas/química , Elétrons , Modelos Teóricos , Estrutura Molecular , Termodinâmica , Zinco/química , Algoritmos , Teoria da Densidade Funcional , Relação Estrutura-Atividade
11.
J Mol Graph Model ; 91: 180-185, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254915

RESUMO

Motivated by a related recent study (Jiao et al. PRL 119, 016403 (2017)), in this work, a new R3¯c type semimetal has been calculated based on the first-principles method. We observed that CuBO3 showed robust multiple Dirac-cones (DCs) near the Fermi level. Also, we found that these DCs were coming from the hybridization between O-p and Cu-d orbits. As a medium state between normal insulating state and topological insulating state, Dirac semimetal is a new class of materials due to its novel physical properties. Moreover, for CuBO3, the Dirac-like band crossings are dispersed in a linear pattern across a very large energy range. In order to guide the experiment, the thermal stability of CuBO3 has been studied through ab initio molecular dynamic simulations. Finally, we are keen to emphasize that the specific space of this group allows for the three-dimensional Dirac point to be used as a symmetric protection for degeneracy. There may be many other three-dimensional Dirac semimetals in the R3¯c phase of crystallization that have not yet been discovered. Thus, more attention to these materials is required in the future.


Assuntos
Compostos de Cálcio/química , Cobre/química , Grafite/química , Óxidos/química , Titânio/química , Cristalização , Simulação de Dinâmica Molecular , Termodinâmica
12.
J Mol Graph Model ; 90: 77-86, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31031219

RESUMO

Structural parameters, electronic structure and optical properties of the dialkali metal monotelluride M2Te (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure were investigated via ab initio calculations using the all electron linearized augmented plane wave approach based on density functional theory with and without including spin-orbit coupling (SOC). The exchange-correlation interactions were described within the PBEsol version of the generalized gradient approximation and Tran-Blaha modified Becke-Johnson potential (TB-mBJ). Optimized equilibrium lattice parameters are in excellent accordance with existing measured ones. Computed energy band dispersions show that the studied compounds are large band gap materials. Inclusion of SOC reduces the band gap value compared to the corresponding one calculated without including SOC. Determination of the energy band character and interatomic bonding nature are performed using the densities of states diagrams and charge density distribution map. Linear optical function spectra are predicted for a wide energy range and the origin of the dielectric function spectrum peaks are determined.


Assuntos
Metais Alcalinos/química , Eletrônica/métodos , Elétrons , Modelos Moleculares
13.
IUCrJ ; 6(Pt 2): 218-225, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867919

RESUMO

In this work, two kinds of competition between different Heusler structure types are considered, one is the competition between XA and L21 structures based on the cubic system of full-Heusler alloys, Pd2 YZ (Y = Co, Fe, Mn; Z = B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb). Most alloys prefer the L21 structure; that is, Pd atoms tend to occupy the a (0, 0, 0) and c (0.5, 0.5, 0.5) Wyckoff sites, the Y atom is generally located at site b (0.25, 0.25, 0.25), and the main group element Z has a preference for site d (0.75, 0.75, 0.75), meeting the well known site-preference rule. The difference between these two cubic structures in terms of their magnetic and electronic properties is illustrated further by their phonon dispersion and density-of-states curves. The second type of competition that was subjected to systematic study was the competitive mechanism between the L21 cubic system and its L10 tetragonal system. A series of potential tetragonal distortions in cubic full-Heusler alloys (Pd2 YZ) have been predicted in this work. The valley-and-peak structure at, or in the vicinity of, the Fermi level in both spin channels is mainly attributed to the tetragonal ground states according to the density-of-states analysis. ΔE M is defined as the difference between the most stable energy values of the cubic and tetragonal states; the larger the value, the easier the occurrence of tetragonal distortion, and the corresponding tetragonal structure is stable. Compared with the ΔE M values of classic Mn2-based tetragonal Heusler alloys, the ΔE M values of most Pd2CoZ alloys in this study indicate that they can overcome the energy barriers between cubic and tetragonal states, and possess possible tetragonal transformations. The uniform strain has also been taken into consideration to further investigate the tetragonal distortion of these alloys in detail. This work aims to provide guidance for researchers to further explore and study new magnetic functional tetragonal materials among the full-Heusler alloys.

14.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 3): 354-360, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830657

RESUMO

Very recently, experimentally synthesized R{\bar 3}c phase LaCuO3 was studied by Zhang, Jiao, Kou, Liao & Du [J. Mater. Chem. C (2018), 6, 6132-6137], and they found that this material exhibits multiple Dirac cones in its non-spin-polarized electronic structure. Motivated by this study, the focus here is on a new R{\bar 3}c phase material, AgCuF3, which has a combination of multiple Dirac cones and 100% spin polarization properties. Compared to the non-spin-polarized system LaCuO3, the spin-polarized Dirac behavior in AgCuF3 is intrinsic. The effects of on-site Coulomb interaction, uniform strain and spin-orbit coupling were added to examine the stability of its multiple Dirac cones and half-metallic behavior. Moreover, the thermodynamic properties under different temperatures and pressures were investigated, including the normalized volume, thermal volume expansion coefficient, heat capacity at constant volume and Debye temperature. The thermal stability and the phase stability of this material were also studied via ab initio molecular dynamic simulations and the formation energy of the material, respectively.

15.
Materials (Basel) ; 11(5)2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762525

RESUMO

We apply First-principles theory to study the electronic structure as well as the magnetic and mechanical characteristics of YRhTiGe, a newly-designed Y-based quaternary equiatomic Heusler compound. This compound is half-metallic in nature with a ferromagnetic ground state. The total magnetic moment of YRhTiGe is 2 µB and it obeys the Slater-Pauling rule, Mt = Zt - 18, where Mt and Zt are the total magnetic moment and total number of valence electrons, respectively. The magnetic and half-metallic behaviors at its equilibrium and strained lattice constants have been discussed in detail. In addition, for FM-type YRhTiGe, its polycrystalline mechanical features such as Poisson's ratio, Lame constants, Kleinman parameter and hardness, are also computed according to the well-known Voigt-Reuss-Hill approximation. We investigate the mechanical anisotropy of YRhTiGe using the directional dependences of the Young's modulus and the shear modulus. Finally, we prove this compound is structurally and mechanically stable. This theoretical investigation provides further insight into the application of Y-based compounds as spintronic materials.

16.
Artigo em Inglês | MEDLINE | ID: mdl-22580145

RESUMO

An ab initio investigation of the optical constants of 9-Methyl-3-Thiophen-2-YI-Thieno [3,2e] [1,2,4] Thriazolo [4,3c] Pyrimidine-8-Carboxylic Acid Ethyl Ester crystal is performed within a framework of local density approximation (LDA), and the Engel-Vosko generalized gradient approximation (EV-GGA) exchange correlation potentials. It is established that there are two independent molecules (A and B) exhibiting different intra-molecular interactions: C-H⋯O (A) and C-H⋯N (B). These intra-molecular interactions favor stabilization of the crystal structure for molecules A and B. It should be emphasized that there exist remarkable π-π interactions between the pyrimidine rings of the two neighbors B molecules giving extra strengths and stabilizations to the superamolecular structure. These different intra-molecular interactions C-H⋯O (A) and C-H⋯N (B) and the π-π interaction between the pyrimidine rings of the two neighbors B molecules give principal contribution to dispersion of optical properties. With a view to seek deeper insight into the electronic structure, the optical properties were investigated. Our calculations show that the optical constants are very anisotropic. The EVGGA calculation shows a blue spectral shift of around 0.024 eV with significant changes in the spectra compared to the LDA calculation. The observed spectral shifts are in agreement with the calculated band structure and corresponding electron density of states.


Assuntos
Modelos Moleculares , Fenômenos Ópticos , Pirimidinas/química , Teoria Quântica , Tiazóis/química , Cristalização , Cristalografia por Raios X , Conformação Molecular
17.
J Phys Chem B ; 113(46): 15237-42, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19856934

RESUMO

We have performed a density functional calculation for the centrosymmetric neodymium gallate using a full-potential linear augmented plane wave method with the LDA and LDA+U exchange correlation. In particular, we explored the influence of U on the band dispersion and optical transitions. Our calculations show that U = 0.55 Ry gives the best agreement with our ellipsometry data taken in the VUV spectral range with a synchrotron source. Our LDA+U (U = 0.55) calculation shows that the valence band maximum (VBM) is located at T and the conduction band minimum (CBM) is located at the center of the Brillouin zone, resulting in a wide indirect energy band gap of about 3.8 eV in excellent agreement with our experiment. The partial density of states show that the upper valence band originates predominantly from Nd-f and O-p states, with a small admixture of Nd-s/p and Ga-p B-p states, while the lower conduction band prevailingly originates from the Nd-f and Nd-d terms with a small contribution of O-p-Ga-s/p states. The Nd-f states in the upper valence band and lower conduction band have a significant influence on the energy band gap dispersion which is illustrated by our calculations. The calculated frequency dependent optical properties show a small positive uniaxial anisotropy.


Assuntos
Gálio/química , Modelos Moleculares , Neodímio/química , Algoritmos , Conformação Molecular , Termodinâmica
18.
J Phys Chem B ; 113(17): 5803-8, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19344138

RESUMO

An all electron full potential linearized augmented plane wave method has been applied for a theoretical study of the band structure, density of states, and electron charge density of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4) using three different approximations for the exchange correlation potential. Our calculations show that the valence band maximum (VBM) and conduction band minimum (CBM) are located at Gamma resulting in a direct energy gap of about 2.0, 2.2, and 2.8 eV for local density approximation (LDA), generalized gradient approximation (GGA), and Engel-Vosko (EVGGA) compared to the experimental value of 2.84 eV. We notice that EVGGA shows excellent agreement with the experimental data. This agreement is attributed to the fact that the Engel-Vosko GGA formalism optimizes the corresponding potential for band structure calculations. We make a detailed comparison of the density of states deduced from the X-ray photoelectron spectra with our calculations. We find that there is a strong covalent bond between the Hg and S atoms and Ga and S atoms. The Hg-Hg, Ga-Ga, and S-S bonds are found to be weaker than the Hg-S and Ga-S bonds showing that a covalent bond exists between Hg and S atoms and Ga and S atoms.


Assuntos
Cobre/química , Elétrons , Gálio/química , Compostos de Mercúrio/química , Análise Espectral/métodos , Simulação por Computador , Modelos Químicos , Raios X
19.
J Phys Condens Matter ; 21(9): 095404, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21817390

RESUMO

The electronic and optical properties of M(2)S (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure have been calculated, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals method based on density functional theory, within both the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism (EV-GGA) is applied so as to optimize the corresponding potential for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, electron charge density and pressure coefficients of energy gaps are given. Results obtained for band structure using EV-GGA are larger than those with LDA and GGA. It is found that the spin-orbit coupling lifts the triple degeneracy at the Γ point and the double degeneracy at the X point. The analysis of the electron charge density shows that the M-S bonds have a significant ionic character. The complex dielectric functions ε(2)(ω) for alkali metal sulfides were calculated for radiation up to 30 eV and the assignment of the critical points to the band structure energy differences at various points of the Brillouin zone was made. The pressure and volume dependence of the static dielectric constant and the refractive index are calculated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...