Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 59(6): 3888-3912, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35437700

RESUMO

The Janus-kinase (JAK) and signal transducer activator of transcription (STAT) signalling pathways regulate gene expression and control various factors involved in normal physiological functions such as cell proliferation, neuronal development, and cell survival. JAK activation phosphorylates STAT3 in astrocytes and microglia, and this phosphorylation has been linked to mitochondrial damage, apoptosis, neuroinflammation, reactive astrogliosis, and genetic mutations. As a regulator, peroxisome proliferator-activated receptor gamma (PPAR-gamma), in relation to JAK-STAT signalling, prevents this phosphorylation and aids in the treatment of the above-mentioned neurocomplications. Changes in cellular signalling may also contribute to the onset and progression of autism. Thus, PPAR-gamma agonist upregulation may be associated with JAK-STAT signal transduction downregulation. It may also be responsible for attenuating neuropathological changes by stimulating SOCS3 or involving RXR or SMRT, thereby reducing transcription of the various cytokine proteins and genes involved in neuronal damage. Along with JAK-STAT inhibitors, PPAR-gamma agonists could be used as target therapeutic interventions for autism. This research-based review explores the potential involvement and mutual regulation of JAK-STAT and PPAR-gamma signalling in controlling multiple pathological factors associated with autism.


Assuntos
Transtorno Autístico , Janus Quinases , Humanos , Janus Quinases/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição STAT/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
2.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164154

RESUMO

Autism spectrum disorder is a neurodevelopmental disorder marked by repetitive behaviour, challenges in verbal and non-verbal communication, poor socio-emotional health, and cognitive impairment. An increased level of signal transducer and activator of transcription 3 (STAT3) and a decreased level of peroxisome proliferator-activated receptor (PPAR) gamma have been linked to autism pathogenesis. Guggulsterone (GST) has a neuroprotective effect on autistic conditions by modulating these signalling pathways. Consequently, the primary objective of this study was to examine potential neuroprotective properties of GST by modulating JAK/STAT and PPAR-gamma levels in intracerebroventricular propionic acid (ICV PPA) induced experimental model of autism in adult rats. In this study, the first 11 days of ICV-PPA injections in rats resulted in autism-like behavioural, neurochemical, morphological, and histopathological changes. The above modifications were also observed in various biological samples, including brain homogenate, CSF, and blood plasma. GST was also observed to improve autism-like behavioural impairments in autistic rats treated with PPA, including locomotion, neuromuscular coordination, depression-like behaviour, spatial memory, cognition, and body weight. Prolonged GST treatment also restored neurochemical deficits in a dose-dependent manner. Chronic PPA administration increased STAT3 and decreased PPAR gamma in autistic rat brain, CSF, and blood plasma samples, which were reversed by GST. GST also restored the gross and histopathological alterations in PPA-treated rat brains. Our results indicate the neuroprotective effects of GST in preventing autism-related behavioural and neurochemical alterations.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Pregnenodionas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Modelos Animais de Doenças , Feminino , Janus Quinases/metabolismo , Masculino , PPAR gama/metabolismo , Propionatos , Ratos Wistar , Fatores de Transcrição STAT/metabolismo
3.
Brain Sci ; 11(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669120

RESUMO

Several studies have documented the role of hyper-activation of extracellular signal-regulated kinases (ERK) in Autism pathogenesis. Alpha-mangostin (AMG) is a phytoconstituents with anti-oxidants, anti-inflammatory, and ERK inhibition properties in many diseases. Our research aims to investigate the neuroprotective effect of AMG in the rat model of intracerebroventricular-propionic acid (ICV-PPA) induced autism with a confirmation of its effect on the ERK signaling. Autism was induced in Wistar rats (total 36 rats; 18 male/18 female) by multiple doses of PPA through ICV injection for 11 days. Actophotometer and beam walking tasks were used to evaluate animals' motor abilities, and the Morris water maze task was utilized to confirm the cognition and memory in animals. Long term administration of AMG 100 mg/kg and AMG 200mg/kg continued from day 12 to day 44 of the experiment. Before that, animals were sacrificed, brains isolated, morphological, gross pathological studies were performed, and neurochemical analysis was performed in the brain homogenates. Cellular and molecular markers, including ERK, myelin basic protein, apoptotic markers including caspase-3, Bax, Bcl-2, neuroinflammatory markers, neurotransmitters, and oxidative stress markers, have been tested throughout the brain. Thus, AMG reduces the overactivation of the ERK signaling and also restored autism-like behavioral and neurochemical alterations.

4.
Metab Brain Dis ; 36(5): 911-925, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33635478

RESUMO

Multiple Sclerosis (MS) is a progressive neurodegenerative disease with clinical signs of neuroinflammation and the central nervous system's demyelination. Numerous studies have identified the role of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) overexpression and the low level of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in MS pathogenesis. Guggulsterone (GST), an active component derived from 'Commiphora Mukul,' has been used to treat various diseases. Traditional uses indicate that GST is a suitable agent for anti-inflammatory action. Therefore, we assessed the therapeutic potential of GST (30 and 60 mg/kg) in ethidium bromide (EB) induced demyelination in experimental rats and investigated the molecular mechanism by modulating the JAK/STAT and PPAR-γ receptor signaling. Wistar rats were randomly divided into six groups (n = 6). EB (0.1%/10 µl) was injected selectively in the intracerebropeduncle (ICP) region for seven days to cause MS-like manifestations. The present study reveals that long-term administration of GST for 28 days has a neuroprotective effect by improving behavioral deficits (spatial cognition memory, grip, and motor coordination) associated with lower STAT-3 levels. While elevating PPAR-γ and myelin basic protein levels in rat brains are consistent with the functioning of both signaling pathways. Also, GST modulates the neurotransmitter level by increasing Ach, dopamine, serotonin and by reducing glutamate. Moreover, GST ameliorates inflammatory cytokines (TNF, IL-1ß), and oxidative stress markers (AchE, SOD, catalase, MDA, GSH, nitrite). In addition, GST prevented apoptosis, as demonstrated by the reduction of caspase-3 and Bax. Simultaneously, Bcl-2 elevation and the restoration of gross morphology alterations are also recovered by long-term GST treatment. Therefore, it can be concluded that GST may be a potential alternative drug candidate for MS-related motor neuron dysfunctions.


Assuntos
Encéfalo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pregnenodionas/farmacologia , Acetilcolinesterase/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Etídio , Feminino , Ácido Glutâmico/metabolismo , Masculino , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/metabolismo , Fármacos Neuroprotetores/uso terapêutico , PPAR gama/metabolismo , Pregnenodionas/uso terapêutico , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...