Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ovarian Res ; 17(1): 156, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068454

RESUMO

Genetic heterogeneity in ovarian cancer indicates the need for personalised treatment approaches. Currently, very few G-protein coupled receptors (GPCRs) have been investigated for active targeting with nanomedicines such as antibody-conjugated drugs and drug-loaded nanoparticles, highlighting a neglected potential to develop personalised treatment. To address the genetic heterogeneity of ovarian cancer, a future personalised approach could include the identification of unique GPCRs expressed in cancer biopsies, matched with personalised GPCR-targeted nanomedicines, for the delivery of lethal drugs to tumour tissue before, during and after surgery. Here we report on the systematic analysis of public ribonucleic acid-sequencing (RNA-seq) gene expression data, which led to prioritisation of 13 GPCRs as candidates with frequent overexpression in ovarian cancer tissues. Subsequently, primary ovarian cancer cells derived from ascites and ovarian cancer cell lines were used to confirm frequent gene expression for the selected GPCRs. However, the expression levels showed high variability within our selection of samples, therefore, supporting and emphasising the need for the future development of case-to-case personalised targeting approaches.


Assuntos
Nanomedicina , Neoplasias Ovarianas , Receptores Acoplados a Proteínas G , Análise de Sequência de RNA , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Nanomedicina/métodos , Análise de Sequência de RNA/métodos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Int J Pharm ; 661: 124368, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38925236

RESUMO

pH-responsive polymeric micelles have been extensively studied for nanomedicine and take advantage of pH differentials in tissues for the delivery of large doses of cytotoxic drugs at specific target sites. Despite significant advances in this area, there is a lack of versatile and adaptable strategies to render micelles pH-responsive that could be widely applied to different payloads and applications. To address this deficiency, we introduce the concept of oligoelectrolyte-mediated, pH-triggered release of hydrophobic drugs from non-responsive polymeric micelles as a highly effective approach with broad scope. Herein, we investigate the influence of the oligoelectrolyte, oligo(2-vinyl pyridine) (OVP), loading and polymer molecular weight on the pH-sensitivity, drug loading/release and cytotoxicity of poly(ethylene glycol-b-ε-caprolactone) (PEG-b-PCL) micelles using copolymers with either short or long hydrophobic blocks (PEG4PCL4 and PEG10PCL10, respectively). The micelles were characterized as a function of pH (7.4 to 3.5). Dynamic light scattering (DLS) revealed narrow particle size distributions (PSDs) for both the blank and OVP-loaded micelles at pH 7.4. While OVP encapsulation resulted in an increase in the hydrodynamic diameter (Dh) (cf. blank micelles), a decrease in the pH below 6.5 led to a decrease in the Dh consistent with the ionization and release of OVP and core collapse, which were further supported by proton nuclear magnetic resonance (1H NMR) spectroscopy and UV-visible (UV-vis) spectrophotometry. The change in zeta potential (ζ) with pH for the OVP-loaded PEG4PCL4 and PEG10PCL10 micelles was different, suggesting that the location/distribution of OVP in the micelles is influenced by the polymer molecular weight. In general, co-encapsulation of drugs (doxorubicin (DOX), gossypol (GP), paclitaxel (PX) or 7-ethyl-10-hydroxycamptothecin (SN38)) and OVP in the micelles proceeded efficiently with high encapsulation efficiency percentages (EE%). In vitro release studies revealed the rapid, pH-triggered release of drugs from OVP-loaded PEG10PCL10 micelles within hours, with higher OVP loadings providing faster and more complete release. In comparison, no triggered release was observed for the OVP-loaded PEG4PCL4 micelles, implying a strong molecular weight dependency. In metabolic assays the drug- and OVP-loaded PEG10PCL10 micelles were found to result in significant enhancement of the cytotoxicity compared to drug-loaded micelles (no OVP) or other controls. Importantly, micelles with low OVP loadings were found to be nearly as effective as those with high OVP loadings. These results provide key insights into the tunability of the oligoelectrolyte-mediated approach for the effective formulation of pH-responsive micelles and pH-triggered drug release.


Assuntos
Sobrevivência Celular , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Poliésteres , Polietilenoglicóis , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Humanos , Poliésteres/química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacocinética , Paclitaxel/administração & dosagem , Paclitaxel/química , Piridinas/química , Piridinas/administração & dosagem , Etilenoglicóis , Lactonas
3.
ACS Appl Mater Interfaces ; 16(8): 9736-9748, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349780

RESUMO

Polymeric micelles have been extensively studied as vectors for the delivery of hydrophobic drugs for the treatment of cancers and other diseases. Despite intensive research, few formulations provide significant benefits, and even fewer have been clinically approved. While many traditional non-responsive micelles have excellent safety profiles, they lack the ability to respond to the intracellular environment and release their cargo in a spatiotemporally defined manner to effectively deliver large doses of cytotoxic drugs into the cytosol of cells that overwhelm efflux pumps. As a novel and adaptable strategy, we hypothesized that well-established non-responsive polymeric micelles could be augmented with a pH-trigger via the co-encapsulation of cytocompatible oligoelectrolytes, which would allow rapid cargo release in the endosome, leading to increased cytotoxicity. Herein, we demonstrate how this strategy can be applied to render non-responsive micelles pH-responsive, resulting in abrupt cargo release at specific and tunable pH values compatible with endosomal delivery, which significantly increased their cytotoxicity up to 3-fold in an ovarian adenocarcinoma (SKOV-3) cell line compared to non-responsive micelles. In comparison, the oligoelectrolyte-loaded micelles were significantly less toxic to healthy 3T3 fibroblasts, indicating a selective cargo release in cancer cell lines. Oligoelectrolytes can be co-encapsulated in the micelles along with drugs at high encapsulation efficiency percentages, which are both ejected from the micelle core upon oligoelectrolyte ionization. Mechanistically, the increase in cytotoxicity appears to also result from the accelerated endosomal escape of the cargo caused by disruption of the endosomal membrane by the simultaneous release of the oligoelectrolytes from the micelles. Furthermore, we show how this approach is broadly applicable to non-responsive micelles regardless of their composition and various classes of hydrophobic chemotherapeutics. The preliminary studies presented here reveal the versatility and wide scope of oligoelectrolyte-mediated, pH-triggered drug release as a compelling and powerful strategy to enhance the cytotoxicity of non-responsive polymeric micelles.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Micelas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Polímeros/química , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Doxorrubicina/química
4.
Cancers (Basel) ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35625966

RESUMO

The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA