Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232592

RESUMO

Long-term neurological and mental complications of COVID-19, the so-called post-COVID syndrome or long COVID, affect the quality of life. The most persistent manifestations of long COVID include fatigue, anosmia/hyposmia, insomnia, depression/anxiety, and memory/attention deficits. The physiological basis of neurological and psychiatric disorders is still poorly understood. This review summarizes the current knowledge of neurological sequelae in post-COVID patients and discusses brain demyelination as a possible mechanism of these complications with a focus on neuroimaging findings. Numerous reviews, experimental and theoretical studies consider brain demyelination as one of the mechanisms of the central neural system impairment. Several factors might cause demyelination, such as inflammation, direct effect of the virus on oligodendrocytes, and cerebrovascular disorders, inducing myelin damage. There is a contradiction between the solid fundamental basis underlying demyelination as the mechanism of the neurological injuries and relatively little published clinical evidence related to demyelination in COVID-19 patients. The reason for this probably lies in the fact that most clinical studies used conventional MRI techniques, which can detect only large, clearly visible demyelinating lesions. A very limited number of studies use specific methods for myelin quantification detected changes in the white matter tracts 3 and 10 months after the acute phase of COVID-19. Future research applying quantitative MRI assessment of myelin in combination with neurological and psychological studies will help in understanding the mechanisms of post-COVID complications associated with demyelination.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , COVID-19 , Doenças Desmielinizantes , COVID-19/complicações , Doenças Desmielinizantes/complicações , Humanos , Qualidade de Vida , Síndrome de COVID-19 Pós-Aguda
2.
Biomedicines ; 10(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35884861

RESUMO

Traditionally histology is the gold standard for the validation of imaging experiments. Matching imaging slices and histological sections and the precise outlining of corresponding tissue structures are difficult. Challenges are based on differences in imaging and histological slice thickness as well as tissue shrinkage and alterations after processing. Here we describe step-by-step instructions that might be used as a universal pathway to overlay MRI and histological images and for a correlation of measurements between imaging modalities. The free available (Fiji is just) ImageJ software tools were used for regions of interest transformation (ROIT) and alignment using a rat brain MRI as an example. The developed ROIT procedure was compared to a manual delineation of rat brain structures. The ROIT plugin was developed for ImageJ to enable an automatization of the image processing and structural analysis of the rodent brain.

3.
Transl Psychiatry ; 11(1): 365, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34226491

RESUMO

Myelin deficiency is commonly recognized as an important pathological feature of brain tissues in schizophrenia (SZ). In this pilot study, global myelin content abnormalities in white matter (WM) and gray matter (GM) of SZ patients were non-invasively investigated using a novel clinically-targeted quantitative myelin imaging technique, fast macromolecular proton fraction (MPF) mapping. MPF maps were obtained from 23 healthy subjects and 31 SZ patients using a clinical 1.5T magnetic resonance imaging (MRI) scanner. Mean MPF in WM and GM was compared between the healthy control subjects and SZ patients with positive and negative leading symptoms using the multivariate analysis of covariance. The SZ patients had significantly reduced MPF in GM (p < 0.001) and WM (p = 0.02) with the corresponding relative decrease of 5% and 3%, respectively. The effect sizes for the myelin content loss in SZ relative to the control group were 1.0 and 1.5 for WM and GM, respectively. The SZ patients with leading negative symptoms had significantly lower MPF in GM (p < 0.001) and WM (p = 0.003) as compared to the controls and showed a significant MPF decrease in WM (p = 0.03) relative to the patients with leading positive symptoms. MPF in WM significantly negatively correlated with the disease duration in SZ patients (Pearson's r = -0.51; p = 0.004). This study demonstrates that chronic SZ is characterized by global microscopic brain hypomyelination of both WM and GM, which is associated with the disease duration and negative symptoms. Myelin deficiency in SZ can be detected and quantified by the fast MPF mapping method.


Assuntos
Esquizofrenia , Substância Branca , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Projetos Piloto , Prótons , Esquizofrenia/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
4.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255702

RESUMO

(1) Background: Neurogenesis is considered to be a potential brain repair mechanism and is enhanced in stroke. It is difficult to reconstruct the neurogenesis process only from the histological sections taken from different animals at different stages of brain damage and restoration. Study of neurogenesis would greatly benefit from development of tissue-specific visualization probes. (2) Purpose: The study aimed to explore if overexpression of ferritin, a nontoxic iron-binding protein, under a doublecortin promoter can be used for non-invasive visualization of neurogenesis using magnetic resonance imaging (MRI). (3) Methods: Ferritin heavy chain (FerrH) was expressed in the adeno-associated viral backbone (AAV) under the doublecortin promoter (pDCX), specific for young neurons, in the viral construct AAV-pDCX-FerrH. Expression of the enhanced green fluorescent protein (eGFP) was used as an expression control (AAV-pDCX-eGFP). The viral vectors or phosphate-buffered saline (PBS) were injected intracerebrally into 18 adult male Sprague-Dawley rats. Three days before injection, rats underwent transient middle-cerebral-artery occlusion or sham operation. Animals were subjected to In vivo MRI study before surgery and on days 7, 14, 21, and 28 days after injection using a Bruker BioSpec 11.7 T scanner. Brain sections obtained on day 28 after injection were immunostained for ferritin, young (DCX) and mature (NeuN) neurons, and activated microglia/macrophages (CD68). Additionally, RT-PCR was performed to confirm ferritin expression. (4) Results: T2* images in post-ischemic brains of animals injected with AAV-pDCX-FerrH showed two distinct zones of MRI signal hypointensity in the ipsilesioned hemisphere starting from 14 days after viral injection-in the ischemic lesion and near the lateral ventricle and subventricular zone (SVZ). In sham-operated animals, only one zone of hypointensity near the lateral ventricle and SVZ was revealed. Immunochemistry showed that ferritin-expressing cells in ischemic lesions were macrophages (88.1%), while ferritin-expressing cells near the lateral ventricle in animals both after ischemia and sham operation were mostly mature (55.7% and 61.8%, respectively) and young (30.6% and 7.1%, respectively) neurons. RT-PCR confirmed upregulated expression of ferritin in the caudoputamen and corpus callosum. Surprisingly, in animals injected with AAV-pDCX-eGFP we similarly observed two zones of hypointensity on T2* images. Cellular studies also showed the presence of mature (81.5%) and young neurons (6.1%) near the lateral ventricle in both postischemic and sham-operated animals, while macrophages in ischemic lesions were ferritin-positive (98.2%). (5) Conclusion: Ferritin overexpression induced by injection of AAV-pDCX-FerrH was detected by MRI using T2*-weighted images, which was confirmed by immunochemistry showing ferritin in young and mature neurons. Expression of eGFP also caused a comparable reduced MR signal intensity in T2*-weighted images. Additional studies are needed to investigate the potential and tissue-specific features of the use of eGFP and ferritin expression in MRI studies.


Assuntos
Ferritinas/genética , Neurogênese/genética , Neurônios/metabolismo , Acidente Vascular Cerebral/genética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Proteína Duplacortina , Vetores Genéticos/farmacologia , Humanos , Infarto da Artéria Cerebral Média , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Imageamento por Ressonância Magnética , Masculino , Microglia/metabolismo , Microglia/patologia , Proteínas Associadas aos Microtúbulos/genética , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
5.
J Magn Reson Imaging ; 51(6): 1789-1798, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31737961

RESUMO

BACKGROUND: Single-point macromolecular proton fraction (MPF) mapping is a recent quantitative MRI method for fast assessment of brain myelination. Information about reproducibility and sensitivity of MPF mapping to magnetic field nonuniformity is important for clinical applications. PURPOSE: To assess scan-rescan repeatability and a value of B0 and B1 field inhomogeneity corrections in single-point synthetic-reference MPF mapping. STUDY TYPE: Prospective. POPULATION: Eight healthy adult volunteers underwent two scans with 11.5 ± 2.3 months interval. FIELD STRENGTH/SEQUENCE: 3T; whole-brain 3D MPF mapping protocol included three spoiled gradient-echo sequences providing T1 , proton density, and magnetization transfer contrasts with 1.25 × 1.25 × 1.25 mm3 resolution and B0 and B1 mapping sequences. ASSESSMENT: MPF maps were reconstructed with B0 and B1 field nonuniformity correction, B0 - and B1 -only corrections, and without corrections. Mean MPF values were measured in automatically segmented white matter (WM) and gray matter (GM). STATISTICAL TESTS: Within-subject coefficient of variation (CV), intraclass correlation coefficient (ICC), Bland-Altman plots, and paired t-tests to assess scan-rescan repeatability. Repeated-measures analysis of variance (ANOVA) to compare field corrections. RESULTS: Maximal relative local MPF errors without correction in the areas of largest field nonuniformities were about 5% and 27% for B0 and B1 , respectively. The effect of B0 correction was insignificant for whole-brain WM (P > 0.25) and GM (P > 0.98) MPF. The absence of B1 correction caused a positive relative bias of 4-5% (P < 0.001) in both tissues. Scan-rescan agreement was similar for all field correction options with ICCs 0.80-0.81 for WM and 0.89-0.92 for GM. CVs were 1.6-1.7% for WM and 0.7-1.0% for GM. DATA CONCLUSION: The single-point method enables high repeatability of MPF maps obtained with the same equipment. Correction of B0 inhomogeneity may be disregarded to shorten the examination time. B1 nonuniformity correction improves accuracy of MPF measurements at 3T. Reliability of whole-brain MPF measurements in WM and GM is not affected by B0 and B1 field corrections. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:1789-1798.


Assuntos
Mapeamento Encefálico , Prótons , Adulto , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Estudos Prospectivos , Reprodutibilidade dos Testes
6.
Phytother Res ; 33(5): 1363-1373, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864249

RESUMO

Recent studies showed hepatoprotective, neuroprotective, and immunomodulatory properties of polyprenols isolated from the green verdure of Picea abies (L.) Karst. This study aimed to investigate effects of polyprenols on oligodendrogenesis, neurogenesis, and myelin content in the cuprizone demyelination model. Demyelination was induced by 0.5% cuprizone in CD-1 mice during 10 weeks. Nine cuprizone-treated animals received daily injections of polyprenols intraperitoneally at a dose of 12-mg/kg body weight during Weeks 6-10. Nine control animals and other nine cuprizone-treated received sham oil injections. At Week 10, brain sections were stained for myelin basic protein, neuro-glial antigen-2, and doublecortin to evaluate demyelination, oligodendrogenesis, and neurogenesis. Cuprizone administration caused a decrease in myelin basic protein in the corpus callosum, cortex, hippocampus, and the caudate putamen compared with the controls. Oligodendrogenesis was increased, and neurogenesis in the subventricular zone and the dentate gyrus of the hippocampus was decreased in the cuprizone-treated group compared with the controls. Mice treated with cuprizone and polyprenols did not show significant demyelination and differences in oligodendrogenesis and neurogenesis as compared with the controls. Our results suggest that polyprenols can halt demyelination, restore impaired neurogenesis, and mitigate reactive overproduction of oligodendrocytes caused by cuprizone neurotoxicity.


Assuntos
Doenças Desmielinizantes/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/química , Plantas/química , Animais , Cuprizona , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia
7.
J Cereb Blood Flow Metab ; 38(5): 919-931, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29372644

RESUMO

A recent MRI method, fast macromolecular proton fraction (MPF) mapping, was used to quantify demyelination in the transient middle cerebral artery occlusion (MCAO) rat stroke model. MPF and other quantitative MRI parameters (T1, T2, proton density, and apparent diffusion coefficient) were compared with histological and immunohistochemical markers of demyelination (Luxol Fast Blue stain, (LFB)), neuronal loss (NeuN immunofluorescence), axonal loss (Bielschowsky stain), and inflammation (Iba1 immunofluorescence) in three animal groups ( n = 5 per group) on the 1st, 3rd, and 10th day after MCAO. MPF and LFB optical density (OD) were significantly reduced in the ischemic lesion on all days after MCAO relative to the symmetrical regions of the contralateral hemisphere. Percentage changes in MPF and LFB OD in the ischemic lesion relative to the contralateral hemisphere significantly differed on the first day only. Percentage changes in LFB OD and MPF were strongly correlated (R = 0.81, P < 0.001) and did not correlate with other MRI parameters. MPF also did not correlate with other histological variables. Addition of T2 into multivariate regression further improved agreement between MPF and LFB OD (R = 0.89, P < 0.001) due to correction of the edema effect. This study provides histological validation of MPF as an imaging biomarker of demyelination in ischemic stroke.


Assuntos
Isquemia Encefálica/patologia , Doenças Desmielinizantes/patologia , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/patologia , Animais , Doenças Desmielinizantes/diagnóstico , Doenças Desmielinizantes/diagnóstico por imagem , Edema , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/patologia , Masculino , Mesotelina , Camundongos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...